6.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a≠0),試探究函數(shù)f(x)的極值情況.

分析 求出函數(shù)的定義域,求出函數(shù)的導數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)區(qū)間,從而確定極值情況.

解答 解:f(x)的定義域是(0,+∞),
f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
a≤0時,f′(x)>0在(0,+∞)恒成立,
故f(x)在(0,+∞)遞增;
函數(shù)f(x)無極值,
a>0時,令f′(x)>0,解得:x>a,
令f′(x)<0,解得;0<x<a,
∴f(x)在(0,a)遞減,在(a,+∞)遞增,
函數(shù)f(x)有極小值,
f(x)極小值=f(a)=1+lna.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,an=2an-1+1(n≥2,n∈N+).
(I)求a2,a3,a4的值;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法來證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域為R,直線x=1和x=2都是曲線y=f(x)的對稱軸,且f(0)=1.則f(4)+f(10)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,過點P(1,-2)的直線l的傾斜角為45°.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ,直線l和曲線C的交點為點A、B.
(I)求直線l的參數(shù)方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,已知四棱錐P-ABCD的底面是邊長為a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E為PA的中點.
(1)求證:平面EBD⊥平面ABCD;
(2)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,
(1)已知a=24,b=13,C=108°,求c,B;
(2)已知b=2,c=10,A=42°,求a,B,C;
(3)已知a=7,b=4$\sqrt{3}$,c=$\sqrt{13}$,求最小的內(nèi)角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知坐標平面上三點A(0,3),B(-$\sqrt{3}$,0),C($\sqrt{3}$,0),P是坐標平面上的點,且PA=PB+PC,則P點的軌跡方程為x2+(y-1)2=4(y≤0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.由y=$\frac{1}{x}$,y=1,y=2,x=0所圍成的面積為ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)存在極值的是( 。
A.y=$\frac{1}{x}$B.y=x4C.y=2D.y=x3

查看答案和解析>>

同步練習冊答案