14.在直角坐標(biāo)系xOy中,過點(diǎn)P(1,-2)的直線l的傾斜角為45°.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ,直線l和曲線C的交點(diǎn)為點(diǎn)A、B.
(I)求直線l的參數(shù)方程;
(Ⅱ)求|PA|•|PB|的值.

分析 (1)求出直線的普通方程,令x=t,從而求出直線的參數(shù)方程;
(2)求出曲線C的普通方程,聯(lián)立方程組,求出A、B的坐標(biāo),根據(jù)兩點(diǎn)間的距離公式求出|PA|•|PB|的值即可.

解答 解:(1)在直角坐標(biāo)系xOy中,過點(diǎn)P(1,-2)的直線l的傾斜角為45°.
∴kl=1,直線方程是:y+2=x-1,y=x-3,
令x=t,則y=t-3,
∴直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=t-3}\end{array}\right.$;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,
曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ,
即為ρ2sin2θ=2ρcosθ,
化為普通方程為:y2=2x,
由$\left\{\begin{array}{l}{y=x-3}\\{{y}^{2}=2x}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=4+\sqrt{7}}\\{y=1+\sqrt{7}}\end{array}\right.$或$\left\{\begin{array}{l}{x=4-\sqrt{7}}\\{y=1-\sqrt{7}}\end{array}\right.$,
∴|PA|•|PB|=$\sqrt{{(-3-\sqrt{7})}^{2}{+(-3-\sqrt{7})}^{2}}$•$\sqrt{{(-3+\sqrt{7})}^{2}{+(-3+\sqrt{7})}^{2}}$=4.

點(diǎn)評(píng) 本題考查了參數(shù)方程和極坐標(biāo)方程化為直角坐標(biāo)方程、曲線的交點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m,n為兩條不同的直線,α,β為兩個(gè)不同的平面,則下列命題中正確的是( 。
A.m∥n,m⊥α⇒n⊥αB.α∥β,m?α,n?β⇒m∥n
C.m?α,n?β,m∥n⇒α∥βD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinx($\frac{π}{2}$-x)sinx-cos2x.
(1)求函數(shù)f(x)的單詞遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=$\frac{1}{2}$,△ABC的面積為$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(x∈R,a≠0),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正數(shù)x,y滿足x+4y=4,則$\frac{x+28y+4}{xy}$的最小值為(  )
A.$\frac{85}{2}$B.24C.20D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)a1+2a2+3a3+…+nan=n(n+1)(n+2),求an
(2)a1=1,3Sn=(n+2)an,求an;
(3)an>0,Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a≠0),試探究函數(shù)f(x)的極值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.記min{a,b}=$\left\{\begin{array}{l}{b,(a≥b)}\\{a,(a<b)}\end{array}\right.$,若函數(shù)f(x)=x2+ax+b在(0,1)上有兩個(gè)零點(diǎn),則min{f(0),f(1)}的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.有一快遞公司承擔(dān)某地區(qū)13個(gè)城市之間的快遞業(yè)務(wù),如果每個(gè)快遞員最多只能承接4個(gè)城市之間的快遞業(yè)務(wù),要使每?jī)蓚(gè)城市之間至少有1名快遞員,那么此快遞公司最少需要13名快遞員?

查看答案和解析>>

同步練習(xí)冊(cè)答案