【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關鍵比賽的部分數(shù)據(jù)統(tǒng)計.兩位選手在此次比賽中擊球所使用的各項技術的比例統(tǒng)計如圖1.在乒乓球比賽中,接發(fā)球技術是指回接對方發(fā)球時使用的各種方法.選手乙在比賽中的接發(fā)球技術統(tǒng)計如表1,其中的前4項技術統(tǒng)稱反手技術,后3項技術統(tǒng)稱為正手技術.
圖1
選手乙的接發(fā)球技術統(tǒng)計表
技術 | 反手擰球 | 反手搓球 | 反手拉球 | 反手撥球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次數(shù) | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術中,差異最為顯著的是哪兩項技術?
(Ⅱ)乒乓球接發(fā)球技術中的拉球技術包括正手拉球和反手拉球.從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認為選手乙的反手技術更穩(wěn)定還是正手技術更穩(wěn)定?(結論不要求證明)
【答案】(Ⅰ)正手搓球和反手擰球(Ⅱ)(Ⅲ)正手技術更穩(wěn)定.
【解析】試題分析:(Ⅰ)根據(jù)所給扇形圖的數(shù)據(jù)可知,差異最為顯著的是正手搓球和反手擰球兩項技術.
(Ⅱ)根據(jù)表1的數(shù)據(jù)可知,選手乙的反手拉球2次,分別記為A,B,正手拉球4次,分別記為a,b,c,d.則從這六次拉球中任取兩次,共15種結果,其中至少抽出一次反手拉球的共有9種,由古典概型概率公式可得概率
(Ⅲ)正手技術更穩(wěn)定.
試題解析:
(Ⅰ)根據(jù)所給扇形圖的數(shù)據(jù)可知,差異最為顯著的是正手搓球和反手擰球兩項技術.
(Ⅱ)根據(jù)表1的數(shù)據(jù)可知,選手乙的反手拉球2次,分別記為A,B,正手拉球4次,分別記為a,b,c,d.則從這六次拉球中任取兩次,共15種結果,分別是:
AB, Aa,Ab, Ac, Ad, Ba, Bb,Bc, Bd, ab,ac, ad, bc, bd,cd.
其中至少抽出一次反手拉球的共有9種,分別是:
AB,Aa,Ab,Ac, Ad, Ba, Bb,Bc, Bd.
則從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率.
(Ⅲ)正手技術更穩(wěn)定.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為.
(1)求橢圓的標準方程;
(2)設直線交軸于點,當點均在軸右側,且時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1, 在直角梯形中, , , , 為線段的中點. 將沿折起,使平面 平面,得到幾何體,如圖2所示.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機器的同時購買的易損零件數(shù).
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據(jù),在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;
(2)令,已知函數(shù),若對任意,總存在 ,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設S是實數(shù)集R的非空子集,若對任意x,y∈S,都有x+y,x-y,xy∈S,則稱S為封閉集.下列命題:①集合S={a+b|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在市的區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數(shù), 表示這個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(Ⅱ)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(Ⅰ)中的線性回歸方程,估算該公司應在區(qū)開設多少個分店,才能使區(qū)平均每個分店的年利潤最大?
參考公式:
, , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來我國電子商務行業(yè)迎來發(fā)展的新機遇,2017年雙11全天交易額達到1682億元,為規(guī)范和評估該行業(yè)的情況,相關管理部門制定出針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行評價,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)完成關于商品和服務評價的列聯(lián)表,判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全為好評的次數(shù)為隨機變量:
①求對商品和服務全為好評的次數(shù)的分布列;
②求的數(shù)學期望和方差.
附:臨界值表:
的觀測值: (其中)
關于商品和服務評價的列聯(lián)表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·黃岡質(zhì)檢)設等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn.若對任意的n∈N*,有S2n<3Sn,則q的取值范圍是( )
A. (0,1] B. (0,2)
C. [1,2) D. (0, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com