分析 先求出p的值,由數(shù)學期望和方差的性質(zhì),可求出答案.
解答 解:∵隨機變量ξ~B(2,p),
P(ξ≥1)=$\frac{5}{9}$,
∴P(ξ=1)+P(ξ=2)=C21p(1-p)+C22p2=$\frac{5}{9}$,
解得p=$\frac{1}{3}$或p=$\frac{5}{3}$(舍),
∵η~B(4,p),
∴Eη=4×$\frac{1}{3}$=$\frac{4}{3}$,D(η)=4×$\frac{1}{3}$×(1-$\frac{1}{3}$)=$\frac{8}{9}$
∴E(2η+1)=2×$\frac{4}{3}$+1=$\frac{11}{3}$,
D(2η+1)=4×D(η)=$\frac{32}{9}$.
點評 本題考查離散型隨機變量的數(shù)學期望的求法,解題時要認真審題,注意二項分布的合理運用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | p∧(¬q) | C. | p∨q | D. | p∨(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.488 | B. | 0.494 | C. | 0.502 | D. | 0.512 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -7.2 | B. | 7.2 | C. | -2.32 | D. | 2.32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{a}=\overrightarrow$ | B. | $\overrightarrow{a}⊥\overrightarrow$ | C. | ($\overrightarrow{a}-\overrightarrow$)$∥\overrightarrow{a}$ | D. | $\overrightarrow{a}•\overrightarrow$=8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com