用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設(shè)正確的是( ).
A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角都大于60度
C.假設(shè)三內(nèi)角至多有一個大于60度
D.假設(shè)三內(nèi)角至多有兩個大于60度
科目:高中數(shù)學(xué) 來源:2015屆山東省高二暑假作業(yè)數(shù)學(xué)試卷三(解析版) 題型:解答題
已知數(shù)列是等差數(shù)列,().
(Ⅰ)判斷數(shù)列是否是等差數(shù)列,并說明理由;
(Ⅱ)如果,(為常數(shù)),試寫出數(shù)列的通項公式;
(Ⅲ)在(Ⅱ)的條件下,若數(shù)列得前項和為,問是否存在這樣的實數(shù),使當(dāng)且僅當(dāng)時取得最大值.若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省菏澤市高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
有一段“三段論”推理是這樣的:“對于可導(dǎo)函數(shù)f(x),如果f′(x0)=0,那么x=x0是函數(shù)f(x)的極值點;因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f′(0)=0,所以x=0是函數(shù)f(x)=x3的極值點.”以上推理中
(1)大前提錯誤;(2)小前提錯誤;(3)推理形式正確;(4)結(jié)論正確
你認為正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省菏澤市高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班50名學(xué)生進行了問卷調(diào)查,得到如圖的2×2列聯(lián)表.
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 50 | 50 |
則至少有( )的把握認為喜愛打籃球與性別有關(guān).
附參考公式:K2=
P(K2>k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 3.004 | 6.615 | 7.789 | 10.828 |
A.95% B.99% C.99.5% D.99.9%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省菏澤市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
某公司近年來科研費用支出x萬元與公司所獲得利潤y萬元之間有如下的統(tǒng)計數(shù)據(jù):
x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(Ⅱ)試根據(jù)(2)求出的線性回歸方程,預(yù)測該公司科研費用支出為10萬元時公司所獲得的利潤.
參考公式:若變量x和y用最小二乘法求出y關(guān)于x的線性回歸方程為:=x+,其中:=,=﹣,參考數(shù)值:2×18+3×27+4×32+5×35=420.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省菏澤市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
由下列事實:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3,
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4,
(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5,
可得到合理的猜想是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濰坊市高二下學(xué)期入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:填空題
命題“不成立”是真命題,則實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)A=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)A>0,且x∈[0,π]時,f(x)的值域是[3,4],求A,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com