19.已知函數(shù)f(x)=$\frac{2x+1}{x-1}$,其定義域是[-8,-4),則下列說(shuō)法正確的是(  )
A.f(x)有最大值$\frac{5}{3}$,無(wú)最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,無(wú)最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

分析 將f(x)化為2+$\frac{3}{x-1}$,判斷在[-8,-4)的單調(diào)性,即可得到最值.

解答 解:函數(shù)f(x)=$\frac{2x+1}{x-1}$=2+$\frac{3}{x-1}$
即有f(x)在[-8,-4)遞減,
則x=-8處取得最大值,且為$\frac{5}{3}$,
由x=-4取不到,即最小值取不到.
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用單調(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)(p,q)是平面直角坐標(biāo)系xOy上一點(diǎn),x1,x2是方程x2-px+q=0的兩個(gè)實(shí)根.記φ(p,q)=max{|x1|,|x2|}(表示|x1|,|x2|中的最大值).過(guò)點(diǎn)A(2,1)作拋物線L:y=$\frac{1}{4}$x2的切線交y軸于點(diǎn)B,對(duì)線段AB上的任一點(diǎn)Q(p,q),求φ(p,q)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.經(jīng)過(guò)點(diǎn)P(3,-1)且對(duì)稱軸都在坐標(biāo)軸上的等軸雙曲線的方程是( 。
A.$\frac{x^2}{10}-\frac{y^2}{10}$=1B.$\frac{y^2}{10}-\frac{x^2}{10}$=1C.$\frac{x^2}{8}-\frac{y^2}{8}$=1D.$\frac{y^2}{8}-\frac{x^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.全集U={2,3,a2+2a-3},A={|a+7|,2},∁uA={5},則實(shí)數(shù)a=( 。
A.2,-4B.-2,4C.2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上存在一點(diǎn)P滿足|OP|為邊長(zhǎng)的正方形的面積等于2ab(其中O為坐標(biāo)原點(diǎn)),則雙曲線的離心率的取值范圍是(  )
A.(1,$\frac{\sqrt{5}}{2}$]B.(1,$\frac{\sqrt{7}}{2}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\frac{\sqrt{7}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.不等式ex≥kx對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)k的最大值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=log2$\frac{x}{1-x}$.
(1)求函數(shù)的定義域;
(2)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),解不等式f(t)-f(2t-$\frac{1}{2}$)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)是偶函數(shù),f(-1)=0,f(x)在[0,+∞)上是增函數(shù),則f(x)<0的解集為(  )
A.(-1,0)B.(-1,1)C.(0,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={x丨-2≤x<4},B={x丨x2-ax-4≤0},若B⊆A,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,2]B.[-1,2)C.[0,3)D.[0,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案