4.不等式ex≥kx對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)k的最大值為e.

分析 由題意可得f(x)=ex-kx≥0恒成立,即有f(x)min≥0,求出f(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間,討論k,可得最小值,解不等式可得k的最大值.

解答 解:不等式ex≥kx對任意實(shí)數(shù)x恒成立,即為
f(x)=ex-kx≥0恒成立,
即有f(x)min≥0,
由f(x)的導(dǎo)數(shù)為f′(x)=ex-k,
當(dāng)k≤0,ex>0,可得f′(x)>0恒成立,f(x)遞增,無最大值;
當(dāng)k>0時(shí),x>lnk時(shí)f′(x)>0,f(x)遞增;x<lnk時(shí)f′(x)<0,f(x)遞減.
即有x=lnk處取得最小值,且為k-klnk,
由k-klnk≥0,解得k≤e,
即k的最大值為e,
故答案為:e.

點(diǎn)評 本題考查不等式恒成立問題的解法,注意運(yùn)用構(gòu)造函數(shù)求最值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},則A∩B=( 。
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(實(shí)驗(yàn)班)已知函數(shù)f(x)=x2+(a-2)x+1在區(qū)間(0,2)和(3,4)上分別存在零點(diǎn),則實(shí)數(shù)a的取值范圍為-$\frac{9}{4}$<a<-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=log2(x2+5x-6)的定義域是( 。
A.[-2,3]B.(-6,1]C.(-∞,-1)∪(6,+∞)D.(-∞,-6)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{2x+1}{x-1}$,其定義域是[-8,-4),則下列說法正確的是( 。
A.f(x)有最大值$\frac{5}{3}$,無最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,無最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=ln(a+x)-ln(a-x)(a>0),若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x.
(1)求a的值;
(2)已知x≥0時(shí),求使f(x)≥2x+$\frac{2{x}^{3}}{3}$+M恒成立的實(shí)數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,則$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1,m≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)在(1,+∞)上的單調(diào)性,并證明;
(3)當(dāng)a=3時(shí),不等式f(x)<3x-t對任意x∈[2,3]恒成立,求t的取值范圍;
(4)當(dāng)x∈(n,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知正數(shù)a,b滿足a+4b=4,求$\frac{1}{a}$+$\frac{1}$的最小值.
(2)求函數(shù)f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案