分析 (I)化簡可得$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=1,從而證明數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是以1為首項(xiàng),1為公差的等差數(shù)列,再求通項(xiàng)公式即可;
(II)化簡bn=$\frac{{a}_{n}}{{2}^{n}}$•cos(n+1)π=ncos(n+1)π,從而可得Sn=1-2+3-4=…+(-1)n+1n,故分類討論即可.
解答 解:(I)∵an+1-2an=2n+1,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=1,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是以1為首項(xiàng),1為公差的等差數(shù)列,
故$\frac{{a}_{n}}{{2}^{n}}$=n,
故an=n•2n;
(II)bn=$\frac{{a}_{n}}{{2}^{n}}$•cos(n+1)π=ncos(n+1)π,
故Sn=1-2+3-4=…+(-1)n+1n,
當(dāng)n為偶數(shù)時(shí),
Sn=1-2+3-4=…-n=-$\frac{n}{2}$;
當(dāng)n為奇數(shù)時(shí),
Sn=1-2+3-4=…+n=-$\frac{n-1}{2}$+n=$\frac{n+1}{2}$;
∴Sn=$\left\{\begin{array}{l}{-\frac{n}{2},n為偶數(shù)}\\{\frac{n+1}{2},n為奇數(shù)}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的判斷與應(yīng)用,同時(shí)考查了構(gòu)造法與分類討論的思想方法應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 360 | B. | 90 | C. | 540 | D. | 2160 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com