19.sin($\frac{π}{6}$-2α)=$\frac{1}{3}$,則cos($\frac{2}{3}$π+2α)=$±\frac{2\sqrt{2}}{3}$.

分析 sin($\frac{π}{6}$-2α)=$\frac{1}{3}$,利用誘導公式可得:$sin(\frac{2π}{3}+2α)$=$\frac{1}{3}$.再利用同角三角函數(shù)基本關系式即可得出.

解答 解:sin($\frac{π}{6}$-2α)=$\frac{1}{3}$,
∴$sin(\frac{2π}{3}+2α)$=$\frac{1}{3}$.
則cos($\frac{2}{3}$π+2α)=±$\sqrt{1-(\frac{1}{3})^{2}}$=$±\frac{2\sqrt{2}}{3}$.
故答案為:$±\frac{2\sqrt{2}}{3}$.

點評 本題考查了誘導公式、同角三角函數(shù)基本關系式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.為了得到函數(shù)y=sin(x+$\frac{π}{3}$)的圖象,只需把函數(shù)y=sinx的圖象上所有的點( 。
A.向左平行移動$\frac{π}{3}$個單位長度B.向右平行移動$\frac{π}{3}$個單位長度
C.向上平行移動$\frac{π}{3}$個單位長度D.向下平行移動$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.
(1)求f(x)的單調區(qū)間;
(2)若f(x)存在極值點x0,且f(x1)=f(x0),其中x1≠x0,求證:x1+2x0=3;
(3)設a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線l:x-$\sqrt{3}$y+6=0與圓x2+y2=12交于A,B兩點,過A,B分別作l的垂線與x軸交于C,D兩點.則|CD|=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在等比數(shù)列{an}中,a2•a4•a6=27,則log3(a1•a3•a5•a7)=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若z=1+2i,則$\frac{4i}{z\overline{z}-1}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知O為坐標原點,F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點分別為F1,F(xiàn)2,直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為$\frac{π}{2}$,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b=$\sqrt{3}$,若l的斜率存在,且($\overrightarrow{{F}_{1}A}$+$\overrightarrow{{F}_{1}B}$)•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項,其中m項為0,m項為1,且對任意k≤2m,a1,a2,…,ak中0的個數(shù)不少于1的個數(shù),若m=4,則不同的“規(guī)范01數(shù)列”共有(  )
A.18個B.16個C.14個D.12個

查看答案和解析>>

同步練習冊答案