10.M在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{3x+4y≥4}\\{y-3≤0}\end{array}\right.$所表示的平面區(qū)域上,點(diǎn)N在曲線x2+y2+4x+3=0上,那么|MN|的最小值是( 。
A.$\frac{1}{2}$B.1C.$\frac{2\sqrt{10}}{3}$-1D.$\frac{2\sqrt{10}}{3}$

分析 作出不等式組對應(yīng)的平面區(qū)域,利用配方法求出圓的標(biāo)準(zhǔn)方程,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由x2+y2+4x+3=0得(x+2)2+y2=1,則圓心為D(-2,0),半徑R=1,
作出不等式組對應(yīng)的平面區(qū)域如圖:
由圖象知,當(dāng)NM垂直直線3x+4y=4時(shí),D到區(qū)域內(nèi)的距離最小,此時(shí)MN最小,
DM=$\frac{|-6+0-4|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{10}{5}$=2,
則MN的最小值為MN=DM-R=2-1=1,
故選:B.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=x3-px2-qx圖象與x軸切于點(diǎn)(1,0),則f(x)極大值與極小值的和=$\frac{4}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b>0,且a≠1,b≠1,若logab>1,則( 。
A.(a-1)(b-1)<0B.(a-1)(b-a)>0C.(b-1)(b-a)<0D.(a-1)(a-b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,則a2+a3+…+a9+a10=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上為減函數(shù),若f(1-a)+f(1-2a)<0求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球的表面積為( 。
A.25πB.$\frac{29π}{4}$C.29πD.116π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow m=(\sqrt{3}cos\frac{x}{2},1)$,$\overrightarrow n=(sin\frac{x}{2},-{cos^2}\frac{x}{2})$,設(shè)函數(shù)$f(x)=\frac{1}{2}+\overrightarrow m•\overrightarrow n$.又在△ABC中,角A、B、C的對邊分別是a,b,c,$f(A)=\frac{1}{2}$.
(1)求角A的大小;
(2)若a=3,且cos(B-C)+cosA=4sin2C.求c邊的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中,不正確的是( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
B.命題“?x0∈R,${x}_{0}^{2}$-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(件)908483807568
求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline y$-b$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案