分析 在所給的等式中,令x=0,可得a0=1,再根據(jù)通項公式可得a1=-20.在所給的等式中,再令x=1,求得a2+a3+…+a9+a10 的值.
解答 解:∵(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,令x=0,可得a0=1,
再根據(jù)通項公式可得a1 =${C}_{10}^{9}$•2•(-1)9=-20.
則再令x=1,可得a0+a1+a2+a3+…+a9+a10=1,即1-20+a2+a3+…+a9+a10=1,
∴a2+a3+…+a9+a10=20,
故答案為:20.
點評 本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{2\sqrt{10}}{3}$-1 | D. | $\frac{2\sqrt{10}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com