17.已知θ∈($\frac{5π}{4}$,$\frac{3π}{2}$),若存在實數(shù)x,y同時滿足$\frac{cosθ}{x}$=$\frac{sinθ}{y}$,$\frac{si{n}^{2}θ}{{x}^{2}}$+$\frac{co{s}^{2}θ}{{y}^{2}}$=$\frac{5}{2({x}^{2}+{y}^{2})}$,則tanθ的值為$\sqrt{2}$.

分析 設$\frac{cosθ}{x}$=$\frac{sinθ}{y}$=t,求出sinθ、cosθ的值,代人另一式化簡,再由sin2θ+cos2θ=1,求出$\frac{{y}^{2}}{{x}^{2}}$+$\frac{{x}^{2}}{{y}^{2}}$=$\frac{5}{2}$;利用tanθ=$\frac{sinθ}{cosθ}$=$\frac{y}{x}$得出方程tan2θ+$\frac{1}{{tan}^{2}θ}$=$\frac{5}{2}$,求出方程的解,再考慮θ∈($\frac{5π}{4}$,$\frac{3π}{2}$),從而確定tanθ的值.

解答 解:設$\frac{cosθ}{x}$=$\frac{sinθ}{y}$=t,
則sinθ=ty,cosθ=tx,
所以$\frac{si{n}^{2}θ}{{x}^{2}}$+$\frac{co{s}^{2}θ}{{y}^{2}}$=$\frac{5}{2({x}^{2}+{y}^{2})}$可化為:
$\frac{{(ty)}^{2}}{{x}^{2}}$+$\frac{{(tx)}^{2}}{{y}^{2}}$=$\frac{5}{2{(x}^{2}{+y}^{2})}$①;
又sin2θ+cos2θ=t2x2+t2y2=1,
得t2=$\frac{1}{{x}^{2}{+y}^{2}}$②;
把②代入①,化簡得$\frac{{y}^{2}}{{x}^{2}}$+$\frac{{x}^{2}}{{y}^{2}}$=$\frac{5}{2}$③;
又tanθ=$\frac{sinθ}{cosθ}$=$\frac{y}{x}$,
所以③式化為tan2θ+$\frac{1}{{tan}^{2}θ}$=$\frac{5}{2}$,
解得tan2θ=2或tan2θ=$\frac{1}{2}$;
所以tanθ=±$\sqrt{2}$或tanθ=±$\frac{\sqrt{2}}{2}$;
又θ∈($\frac{5π}{4}$,$\frac{3π}{2}$),
所以tanθ>1,
所以取tanθ=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查了三角函數(shù)的求值問題,也考查了轉(zhuǎn)化法的應用問題以及方程組的解法與應用問題,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.等比數(shù)列{an}中,a4+a9=-8,a7+a12=1,則公比q=( 。
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知α終邊上存在一點P(1,2),計算:
(1)$\frac{2sinα-cosα}{sinα+cosα}$;
(2)sin2α+sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知拋物線E:y2=2px(p>0)上一點M ( x0,4)到焦點F 的距離|MF|=$\frac{5}{4}$x0
(Ⅰ)求E 的方程;
(Ⅱ)過F 的直線l 與E 相交于A,B 兩點,AB 的垂直平分線l′與E相交于C,D 兩點,若$\overrightarrow{AC}•\overrightarrow{AD}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=mx3-3x2+n-2(m≠0).
(1)若f(x)在x=1處取得極小值1,求實數(shù)m,n的值;
(2)在(1)的條件下,求函數(shù)f(x)在x∈[-1,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若拋物線C:y2=2xcosA(其中角A為△ABC的一個內(nèi)角)的準線過點$(\frac{2}{5},4)$,則cos2A+sin2A的值為( 。
A.$-\frac{8}{25}$B.$\frac{8}{5}$C.$\frac{8}{25}$D.$\frac{{1-2\sqrt{6}}}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知圓x2+y2-2x-4y+m=0.
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且以MN為直徑的圓過坐標原點,求以MN為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知拋物線C:y2=4x的焦點為F,直線AB過點與拋物線C交拋物線于A,B兩點,且AB=6,若AB的垂直平分線交x軸于P點,則|$\overrightarrow{OP}$|=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=ln(x-1)+$\frac{2a}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x>2,xln(x-1)>a(x-2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案