直線l經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(-1,-1),則直線l的傾斜角是( 。
A、
π
4
B、
4
C、
π
4
4
D、-
π
4
考點(diǎn):直線的傾斜角
專題:直線與圓
分析:利用斜率的計(jì)算公式先求出直線的斜率,再利用正切函數(shù)求出直線的斜率.
解答: 解:∵直線l經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(-1,-1),
∴直線l的斜率k=
-1
-1
=1,
∴直線l的傾斜角α=
π
4

故選:A.
點(diǎn)評:本題考查直線的傾斜角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意斜率公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PA⊥底面ABCD且PA=4,則PC與底面ABCD所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x+
4
x
(x>0)的最小值是( 。
A、2B、1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(a,b)在直線3x+4y=10上,則
a2+b2
的最小值為( 。
A、2
B、3
C、
15
4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“過點(diǎn)(0,1)的直線l與雙曲線x2-
y2
3
=1
有且僅有一個(gè)公共點(diǎn)”是“直線l的斜率k的值為±2”的( 。
A、充分必要條件
B、充分但不必要條件
C、必要但不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線x2-
y2
4
=1
有共同的漸近線,且經(jīng)過點(diǎn)P(1,4)的雙曲線方程為( 。
A、
y2
12
-
x2
3
=1
B、2x2-
y2
16
=1
C、
x2
3
-
y2
12
=1
D、-x2+
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x)=
1
2x
-cosx,若
π
3
<a<b<
6
,則( 。
A、f(a)>f(b)
B、f (a)<f(b)
C、f (a)=f (b)
D、f (a) f (b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某政府準(zhǔn)備建造一個(gè)橢圓游泳池(a>b),橢圓的一個(gè)焦點(diǎn)到橢圓上的點(diǎn)的最大距離是最小距離的4倍.
(1)求此游泳池所在橢圓的離心率;
(2)已知橢圓的焦距為120米,在橢圓的長軸上的M1、M2處設(shè)計(jì)兩個(gè)噴水頭,使分出的水花形成有相等半徑的圓M1,圓M2,且圓M1與圓M2外切,同時(shí)噴出的水不能落到橢圓形游泳池之外,試求兩圓的最大半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0),雙曲線C上一點(diǎn)P到F1,F(xiàn)2距離差的絕對值等于2.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)M(2,1)作直線l交雙曲線C的右支于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程.
(3)已知定點(diǎn)G(1,2),點(diǎn)D是雙曲線C右支上的動點(diǎn),求|DF1|+|DG|的最小值.

查看答案和解析>>

同步練習(xí)冊答案