分析 (Ⅰ)由周期求得ω,由最低點(diǎn)的坐標(biāo)結(jié)合五點(diǎn)法作圖求得A及φ的值,可得函數(shù)f(x)的解析式.
(Ⅱ)由條件利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)遞增區(qū)間.
(Ⅲ)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$],利用正弦函數(shù)的定義域和值域,求得f(x)的值域.
解答 解:(Ⅰ)由圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為$\frac{π}{2}$,$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2,
再根據(jù)圖象上一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-2),可得A=2,2×$\frac{2π}{3}$+φ=$\frac{3π}{2}$,φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
(Ⅱ)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z;
(Ⅲ)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$]時(shí),$\frac{π}{3}$≤2x+$\frac{π}{6}$≤$\frac{7π}{6}$,∴sin(2x+$\frac{π}{6}$)∈[-1,2],故函數(shù)的值域?yàn)閇-1,2].
點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com