4.在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,若a=3,∠B=2∠A,cosA=$\frac{\sqrt{6}}{3}$,則sinA=$\frac{\sqrt{3}}{3}$,b=2$\sqrt{6}$.

分析 利用同角三角函數(shù)基本關(guān)系式可求sinA,由二倍角公式可求sinB,利用正弦定理即可求b的值.

解答 解:∵cosA=$\frac{\sqrt{6}}{3}$,A為三角形內(nèi)角,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{3}$,
∵a=3,∠B=2∠A,sinB=2sinAcosA=2×$\frac{\sqrt{3}}{3}$×$\frac{\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$
∴由正弦定理可得:$\frac{3}{\frac{\sqrt{3}}{3}}$=$\frac{sinB}$,可得:b=$\frac{3×sinB}{\frac{\sqrt{3}}{3}}$=$\frac{2\sqrt{2}}{\frac{\sqrt{3}}{3}}$=2$\sqrt{6}$.
故答案為:$\frac{\sqrt{3}}{3}$,2$\sqrt{6}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.從橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)M向x軸作垂線,垂足恰為左焦點(diǎn)F1,點(diǎn)A、B是橢圓與x軸正半軸、y軸正半軸的交點(diǎn),且AB∥OM,|F1A|=$\sqrt{10}+\sqrt{5}$.
(Ⅰ)求該橢圓的離心率;
(Ⅱ) 若P是該橢圓上的動(dòng)點(diǎn),右焦點(diǎn)為F2,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,正方體中,兩條異面直線BC1與B1D1所成的角是( 。
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.與函數(shù)y=|x|相等的函數(shù)是(  )
A.y=($\sqrt{x}$)2B.y=($\root{3}{x}$)3C.y=$\sqrt{{x}^{2}}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=(m-1)xm是冪函數(shù),則實(shí)數(shù)m的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$為單位向量,且$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,(k>0),若以向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩邊的三角形的面積為$\frac{1}{2}$,則k的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)的和為Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+4,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系中xOy中,直線l的斜率為k且過點(diǎn)(0,$\sqrt{2}$),直線l與橢圓C:$\frac{{x}^{2}}{2}+{y}^{2}=1$相交于兩點(diǎn)P和Q.
(Ⅰ)求斜率k的取值范圍;
(Ⅱ)若點(diǎn)M為線段PQ的中點(diǎn),橢圓C分別與x軸正半軸、y軸正半軸交于點(diǎn)A、B,問是否存在斜率k,使得$\overrightarrow{OM}$與$\overrightarrow{AB}$共線?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為$\frac{π}{2}$,且圖象上一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-2).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$]時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案