10.若函數(shù)f(x)=x2+3x-4在x∈[-1,3]上的最大值和最小值分別為M,N,則M+N=8.

分析 求出f(x)的對(duì)稱軸,可得區(qū)間[-1,3]為增區(qū)間,可得最值,即可得到M+N的值.

解答 解:函數(shù)f(x)=x2+3x-4的對(duì)稱軸為x=-$\frac{3}{2}$,
區(qū)間[-1,3]在對(duì)稱軸的右邊,
即有f(x)在區(qū)間[-1,3]遞增,
可得最小值N=f(-1)=-6;
最大M=f(3)=14,
可得M+N=8.
故答案為:8.

點(diǎn)評(píng) 本題考查二次函數(shù)的最值的求法,注意討論對(duì)稱軸和區(qū)間的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-x+1,g(x)=2x4-18x2+12x+68.
(1)如果不等式f(x)≥ax2+a對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)是否存在正實(shí)數(shù)M,使得不等式f(x)+$\sqrt{g(x)}$≥M對(duì)任意的x∈R恒成立,求出M的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中a1=1,nan=(n+1)an+1,則a2016=$\frac{1}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)M在y軸正半軸上,那么以線段F1P為直徑的圓的標(biāo)準(zhǔn)方程為x2+(y-$\frac{3}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.化簡(jiǎn)$\sqrt{1-si{n}^{2}160°}$=( 。
A.cos20°B.-cos20°C.±cos20°D.±|cos20°|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,雙曲線x2-y2=1的漸近線方程是y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an},對(duì)于任意n∈N*,都有an=n2-bn,是否存在一個(gè)整數(shù)m,使得當(dāng)b<m時(shí),數(shù)列{an}為遞增數(shù)列?這樣的整數(shù)是否唯一?是否存在最大的整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的三個(gè)角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2-ab=c2,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大小;
(2)設(shè)f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期為π,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案