分析 運用向量的數(shù)量積的坐標表示,以及二倍角公式和輔助角公式,結(jié)合正弦函數(shù)的圖象和性質(zhì),即可得到最值.
解答 解:f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$sinxcosx+cos2x-m2
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$-m2
=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$-m2,
由$x∈[{-\frac{π}{6},\frac{π}{3}}]$,可得2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
即有x=-$\frac{π}{6}$時,sin(2x+$\frac{π}{6}$)取得最小值-$\frac{1}{2}$,
可得f(x)的最小值為-m2=-4,可得m=±2;
x=$\frac{π}{6}$時,sin(2x+$\frac{π}{6}$)取得最大值1,
即有f(x)取得最大值1+$\frac{1}{2}$-4=-$\frac{5}{2}$,
故答案為:-$\frac{5}{2}$,$\frac{π}{6}$.
點評 本題考查向量的數(shù)量積的坐標表示,考查正弦函數(shù)的值域的求法,注意運用二倍角公式和輔助角公式,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (±1,0) | B. | $({±\sqrt{2m+1},0})$ | C. | (0,±1) | D. | $({0,±\sqrt{2m+1}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{3}}}{5}$ | D. | $\frac{{2\sqrt{3}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com