15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且f(x)=$\overrightarrow{a}$•$\overrightarrow$,當(dāng)$x∈[{-\frac{π}{6},\frac{π}{3}}]$時(shí),f(x)的最小值是-4,求此時(shí)函數(shù)f(x)的最大值-$\frac{5}{2}$,此時(shí)X=$\frac{π}{6}$.

分析 運(yùn)用向量的數(shù)量積的坐標(biāo)表示,以及二倍角公式和輔助角公式,結(jié)合正弦函數(shù)的圖象和性質(zhì),即可得到最值.

解答 解:f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$sinxcosx+cos2x-m2
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$-m2
=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$-m2,
由$x∈[{-\frac{π}{6},\frac{π}{3}}]$,可得2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
即有x=-$\frac{π}{6}$時(shí),sin(2x+$\frac{π}{6}$)取得最小值-$\frac{1}{2}$,
可得f(x)的最小值為-m2=-4,可得m=±2;
x=$\frac{π}{6}$時(shí),sin(2x+$\frac{π}{6}$)取得最大值1,
即有f(x)取得最大值1+$\frac{1}{2}$-4=-$\frac{5}{2}$,
故答案為:-$\frac{5}{2}$,$\frac{π}{6}$.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示,考查正弦函數(shù)的值域的求法,注意運(yùn)用二倍角公式和輔助角公式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{x^2}{m+1}+\frac{y^2}{m}={1^{\;}}({m∈R})$的焦點(diǎn)坐標(biāo)為(  )
A.(±1,0)B.$({±\sqrt{2m+1},0})$C.(0,±1)D.$({0,±\sqrt{2m+1}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$cos(x+\frac{π}{6})-sinx=\frac{3\sqrt{3}}{5}$,則$cos({x+\frac{π}{3}})$=( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{3}}}{5}$D.$\frac{{2\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為2$\sqrt{2}$+2
(1)求橢圓C的方程;
(2)設(shè)過橢圓C的右焦點(diǎn)F的直線l與橢圓C交于A,B兩點(diǎn),試問:在x軸上是否存在定點(diǎn)M,使$\overrightarrow{MA}•\overrightarrow{MB}=-\frac{7}{16}$成立?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)y=f(x)定義域?yàn)镈,若對(duì)于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對(duì)稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對(duì)稱中心,計(jì)算$S=f(\frac{1}{2015})+f(\frac{2}{2015})+…+f(\frac{4028}{2015})+f(\frac{4029}{2015})$的值-8058)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,橢圓C上任意一點(diǎn)到橢圓兩焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=x-2與橢圓C交于M,N兩點(diǎn),O是原點(diǎn),求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{{cos(x-\frac{3π}{2})•sin(\frac{5π}{2}+x)}}{cos(-x-π)}$,g(x)=$\sqrt{2}sin(2x-\frac{π}{4})$
(1)化簡(jiǎn)f(x);
(2)利用“五點(diǎn)法”,按照列表-描點(diǎn)-連線三步,畫出函數(shù)g(x)一個(gè)周期的圖象;
(3)函數(shù)g(x)的圖象可以由函數(shù)f(x)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x),g(x)滿足${∫}_{-1}^{1}$f(x)g(x)dx=0,則稱f(x),g(x)為區(qū)間[-1,1]上的一組正交函數(shù),給出三組函數(shù):①f(x)=sinx,g(x)=cosx;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2其中為區(qū)間[-1,1]的正交函數(shù)的組數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知200°的圓心角所對(duì)的圓弧長(zhǎng)是50cm,求圓的半徑(精確到0.1cm)

查看答案和解析>>

同步練習(xí)冊(cè)答案