16.已知直線2ax+by-2=0(a>0,b>0)經(jīng)過圓(x-1)2+(y-2)2=4的圓心,則$\frac{1}{a}$+$\frac{1}$的最小值為4.

分析 求得圓心(1,2),代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.

解答 解:圓(x-1)2+(y-2)2=4的圓心為(1,2),
由題意可得2a+2b-2=0,即a+b=1,a,b>0,
則$\frac{1}{a}$+$\frac{1}$=(a+b)($\frac{1}{a}$+$\frac{1}$)=2+$\frac{a}$+$\frac{a}$≥2+2$\sqrt{\frac{a}•\frac{a}}$=4,
當(dāng)且僅當(dāng)a=b=$\frac{1}{2}$時,取得最小值4.
故答案為:4.

點評 本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,且PA=$\sqrt{6}$,則PC與平面ABCD所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某初級中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級全體800名學(xué)生中抽50名學(xué)生.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號,如果抽到的是7,則從33~48這16個數(shù)中應(yīng)取的數(shù)是( 。
A.40B.39C.38D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,B=120°,AB=$\sqrt{2}$,A的角平分線AD=$\sqrt{3}$,則AC=( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)命題P:?x>0,x>lnx,則¬p為?x0>0,x0≤lnx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.cos($\frac{2018π}{3}$)=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知z為復(fù)數(shù),z+2i和$\frac{z}{2-i}$均為實數(shù),其中i是虛數(shù)單位.則復(fù)數(shù)|z|=$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)計一個算法求1×2×3×…×100的積,要求畫出程序框圖并寫出相應(yīng)的程序語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,且b2=a2+(c-$\sqrt{3}$a)c.
(1)求角B的大小;
(2)設(shè)b2-4bcos(A-C)+4=0,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案