20.已知數(shù)列{an}的前n項(xiàng)Sn=(-1)n•$\frac{1}{n}$,若存在正整數(shù)n,使得(an-1-p)•(an-p)<0成立,則實(shí)數(shù)p的取值范圍是$(-1,\frac{3}{2})$.

分析 Sn=(-1)n•$\frac{1}{n}$,可得:當(dāng)n=1時(shí),a1=-1;當(dāng)n≥2時(shí),an=Sn-Sn-1.若存在正整數(shù)n,使得(an-1-p)•(an-p)<0成立,當(dāng)n=2時(shí),(a1-p)(a2-p)<0,解得p范圍.當(dāng)n≥3時(shí),$[(-1)^{n-1}•\frac{2n-3}{{n}^{2}-3n+2}-p]$$[(-1)^{n}\frac{2n-1}{{n}^{2}-n}-p]$<0,對(duì)n分類討論即可得出.

解答 解:∵Sn=(-1)n•$\frac{1}{n}$,
∴當(dāng)n=1時(shí),a1=-1;當(dāng)n≥2時(shí),an=Sn-Sn-1=(-1)n•$\frac{1}{n}$-(-1)n-1$•\frac{1}{n-1}$=$(-1)^{n}•\frac{2n-1}{{n}^{2}-n}$,
若存在正整數(shù)n,使得(an-1-p)•(an-p)<0成立,
當(dāng)n=2時(shí),(a1-p)(a2-p)=(-1-p)$(\frac{3}{2}-p)$<0,解得$-1<p<\frac{3}{2}$.
當(dāng)n≥3時(shí),$[(-1)^{n-1}•\frac{2n-3}{{n}^{2}-3n+2}-p]$$[(-1)^{n}\frac{2n-1}{{n}^{2}-n}-p]$<0,
當(dāng)n=2k時(shí),$(p+\frac{2n-3}{{n}^{2}-3n+2})$$(p-\frac{2n-1}{{n}^{2}-n})$<0,
∵$\frac{2n-3}{(n-1)(n-2)}$-$\frac{2n-1}{n(n-1)}$=$\frac{2}{n(n-2)}$>0.
∴-$\frac{2n-3}{{n}^{2}-3n+2}$<p<$\frac{2n-1}{{n}^{2}-n}$.
可得:-$\frac{5}{6}$<p<$\frac{7}{12}$.
當(dāng)n=2k-1時(shí),$(p-\frac{2n-3}{{n}^{2}-3n+2})$$(p+\frac{2n-1}{{n}^{2}-n})$<0,
-$\frac{2n-1}{{n}^{2}-n}$<p<$\frac{2n-3}{{n}^{2}-3n+2}$,
∴-$\frac{5}{6}$<p<$\frac{3}{2}$.
綜上可得:實(shí)數(shù)p的取值范圍是-1<p<$\frac{3}{2}$..
故答案為:$(-1,\frac{3}{2})$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、不等式的解法、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)二次函數(shù)f(x)=ax2+bx+1(a,b∈R,a>0),方程f(x)=x的兩個(gè)實(shí)數(shù)根為x1,x2,若0<x1<2,|x2-x1|=2,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值與最小值,其中|x|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{\root{3}{{x}^{2}+2x+1}+\root{3}{{x}^{2}-1}+\root{3}{{x}^{2}-2x+1}}$,求f(1)+f(3)+f(5)+…+f(2k-1)+…+f(999)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.求下列余弦值:cos2013π=-1;cos(-$\frac{13π}{6}$)=$\frac{\sqrt{3}}{2}$;cos780°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列說法不正確的有①②③④. 
①若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的方向相同或 相反;
②若λ$\overrightarrow{a}$=$\overrightarrow{0}$,則λ=0;
③相反向量必不相等;
④若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$,λ∈R且 λ≠0,則$\overrightarrow{a}$∥$\overrightarrow$的充要條件是$\overrightarrow{{e}_{2}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{p{x^2}+1}}{x+q}$是奇函數(shù),且f(2)=$\frac{5}{2}$.
(1)求實(shí)數(shù)p,q的值;
(2)判斷f(x)在[1,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意的t≥1,試比較f(t2-t+1)與f(2t2-t)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a=(3,1),\overrightarrow b=(1,3),\overrightarrow c=(k,2)$,若$(\overrightarrow a-\overrightarrow c)∥\overrightarrow b$,則k=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知⊙O的圓心為原點(diǎn),與直線3x+4y-15=0相切,⊙M的方程為(x-3)2+(y-4)2=1,過⊙M上任一點(diǎn)P作⊙O的切線PA,切點(diǎn)為A,若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),則PA的直線方程為x=3或7x-24y+75=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案