分析 (1)根據(jù)函數(shù)奇偶性的性質(zhì)和條件建立方程關(guān)系即可求實數(shù)p,q的值;
(2)根據(jù)函數(shù)單調(diào)性的定義即可證明f(x)在[1,+∞)上的單調(diào)性;
(3)根據(jù)函數(shù)單調(diào)性的性質(zhì),結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行比較即可.
解答 解:(1)∵f(x)是奇函數(shù),∴f(-x)=-f(x)
∴$\frac{{p{{({-x})}^2}+1}}{-x+q}=-\frac{{p{x^2}+1}}{x+q}$恒成立,
∴q=0…(1分)
又∵f(2)=$\frac{5}{2}$.∴$\frac{4p+1}{2}=\frac{5}{2}$
∴p=1…(3分)
(2)∵$f(x)=x+\frac{1}{x}$,
任取x1,x2∈[1,+∞),且x1<x2,
則f(x1)-f(x2)=$({x_1}+\frac{1}{x_1})-({x_2}+\frac{1}{x_2})=({x_1}-{x_2})(1-\frac{1}{{{x_1}•{x_2}}})=\frac{{({x_1}-{x_2})({x_1}•{x_2}-1)}}{{{x_1}•{x_2}}}$…(6分)
∵1≤x1<x2<+∞
∴x1-x2<0,x1•x2>1,∴x1•x2-1>0
∴$\frac{{({x_1}-{x_2})({x_1}•{x_2}-1)}}{{{x_1}•{x_2}}}<0$,即f(x1)<f(x2).
∴f(x)在[1,+∞)上為增函數(shù)…(8分)
(3)∵y1=t2-t+1的對稱軸為$t=\frac{1}{2}$,
∴y1=t2-t+1在[1,+∞)上單調(diào)遞增,∴y1≥1-1+1=1…(9分)
又∵${y_2}=2{t^2}-t$的對稱軸為$t=\frac{1}{2}$,
∵${y_2}=2{t^2}-t=2{(t-\frac{1}{4})^2}-\frac{1}{8}$在[1,+∞)上單調(diào)遞增,
∴y2≥2-1=1…(10分)
又∴${y_2}-{y_1}=(2{t^2}-t)-({t^2}-t+1)={t^2}-1≥0$,(t≥1)
∴y2≥y1,…(12分)
又∵f(x)在(1,+∞)上的單調(diào)遞增,
∴f(y2)≥f(y1)
即f(t2-t+1)≤f(2t2-t)…(13分)
點評 本題主要考查函數(shù)解析式的求解,函數(shù)單調(diào)性的判斷和應(yīng)用,利用一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)n=5時該命題不成立 | B. | 當(dāng)n=5時該命題成立 | ||
C. | 當(dāng)n=2時該命題不成立 | D. | 當(dāng)n=2時該命題成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 1或-2 | D. | -1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com