分析 (1)由已知結(jié)合向量平行的坐標運算列式求得x值;
(2)求出f(x)的解析式,可得g(x),化簡后即可求得周期,再由復合函數(shù)的單調(diào)性求得函數(shù)g(x)的單調(diào)遞增區(qū)間.
解答 解:(1)∵$\vec m$=($\sqrt{3}$sinx,sinx),$\vec n$=(cosx,sinx),且$\overrightarrow{m}∥\overrightarrow{n}$,
∴$\sqrt{3}si{n}^{2}x-sinxcosx=0$,即sinx($\sqrt{3}sinx-cosx$)=0,
∴sinx=0或tanx=$\frac{\sqrt{3}}{3}$,
∵$x∈[{0,\frac{π}{2}}]$,
∴x=0或x=$\frac{π}{6}$;
(2)由f(x)=$\overrightarrow m•\overrightarrow n$=$\sqrt{3}sinxcosx+si{n}^{2}x$=$\frac{\sqrt{3}}{2}sin2x+\frac{1-cos2x}{2}$=$sin(2x-\frac{π}{6})+\frac{1}{2}$.
可得g(x)=f(x+$\frac{π}{12}$)=$sin2x+\frac{1}{2}$.
∴T=$\frac{2π}{2}=π$;
由$-\frac{π}{2}+2kπ≤2x≤\frac{π}{2}+2kπ$,解得$-\frac{π}{4}+kπ≤x≤\frac{π}{4}+kπ$,k∈Z.
∴函數(shù)g(x)的單調(diào)遞增區(qū)間為[-$\frac{π}{4}+kπ,\frac{π}{4}+kπ$],k∈Z.
點評 本題考查平面向量的數(shù)量積運算,考查三角函數(shù)中的恒等變換應用,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 1 | C. | $\sqrt{19}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2或3 | B. | 3 | C. | 2 | D. | 2或-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20° | B. | 70° | C. | 110° | D. | 160° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com