【題目】如圖,AB⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點(diǎn),AN⊥PM,N為垂足

(1)求證:AN⊥平面PBM;

(2)AQ⊥PB,垂足為Q,求證:NQ⊥PB.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

1)由平面,結(jié)合得出平面P,于是,又,根據(jù)線面垂直判定定理得結(jié)果;(2)由(1)易得,又得出平面,進(jìn)而可得結(jié)果.

證明 (1)∵AB為⊙O的直徑,∴AM⊥BM.

又PA⊥平面ABM,∴PA⊥BM,

又∵PA∩AM=A,∴BM⊥平面PAM.

又AN平面PAM,∴BM⊥AN.

又AN⊥PM,且BM∩PM=M,

∴AN⊥平面PBM.

(2)由(1)知AN⊥平面PBM,PB平面PBM,∴AN⊥PB.

又∵AQ⊥PB,AN∩AQ=A,

∴PB⊥平面ANQ.又NQ平面ANQ.

∴PB⊥NQ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:

(1)求圓C的直角坐標(biāo)方程;

(2)設(shè)圓C與直線交于兩點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面;

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為xy,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為.

1)求隨機(jī)變量的最大值,并求事件取得最大值的概率;

2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是曲線上動(dòng)點(diǎn)以及定點(diǎn),

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)求面積的最小值,并求出相應(yīng)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有(

①在回歸分析中,可以借助散點(diǎn)圖判斷兩個(gè)變量是否呈線性相關(guān)關(guān)系.

②在回歸分析中,可以通過(guò)殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.

③在回歸分析模型中,相關(guān)系數(shù)的絕對(duì)值越大,說(shuō)明模型的擬合效果越好.

④在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量增加0.1個(gè)單位.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬(wàn)元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面,底面為等腰梯形,,,,點(diǎn)E邊上的點(diǎn),.

1)求證:平面

2)若,求點(diǎn)E到平面的距離 .

查看答案和解析>>

同步練習(xí)冊(cè)答案