分析 (Ⅰ)由余弦定理得CF=2$\sqrt{3}$且CF⊥AB,AD⊥CF,從而CF⊥平面DABE,∠DFE為二面角D-CF-E的平面角.推導(dǎo)出∠DFE=90°,由此能證明平面CDF⊥平面CEF.
(Ⅱ)以C為坐標(biāo)原點(diǎn),CA為x軸,CB為y軸,建立空間直角坐標(biāo)系C-xyz,利用向量法能求出a的值.
解答 證明:(Ⅰ)∵直角三角形ABC中,∠BAC=60°,AC=4
∴AB=8,AF=$\frac{1}{4}$AB=2,由余弦定理得CF=2$\sqrt{3}$且CF⊥AB.
∵AD⊥平面ABC,CF?平面ABC,∴AD⊥CF,
又AD∩AB=A,∴CF⊥平面DABE,
∴CF⊥DF,CF⊥EF.
∴∠DFE為二面角D-CF-E的平面角.
又AF=2,AD=3,BE=4,BF=6,
故Rt△ADF∽Rt△BFE.∴∠ADF=∠BFE,
∴∠AFD+∠BFE=∠AFD+∠ADF=90°,
∴∠DFE=90°,D-CF-E為直二面角.
∴平面CDF⊥平面CEF.…(6分)
解:(Ⅱ)以C為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系C-xyz,
則C(0,0,0),B(0,4$\sqrt{3}$,0),E(0,4$\sqrt{3}$,4),
F(3,$\sqrt{3}$,0),M(0,a,0),(0≤a≤4$\sqrt{3}$)
∴$\overrightarrow{CF}$=(3,$\sqrt{3}$,0),$\overrightarrow{EM}$=(0,a-4$\sqrt{3}$,-4),
∵異面直線CF與EM所成角的余弦值為$\frac{1}{4}$,
∴|cos?$\overrightarrow{CF}$,$\overrightarrow{EM}$>|=$\frac{|\overrightarrow{CF}•\overrightarrow{EM}|}{|\overrightarrow{CF}|•|\overrightarrow{EM}|}$=$\frac{\sqrt{3}(4\sqrt{3}-a)}{2\sqrt{3}•\sqrt{(4\sqrt{3}-a)2+16}}$=$\frac{1}{4}$,
解得a=$\frac{8\sqrt{3}}{3}$,故CM=$\frac{8\sqrt{3}}{3}$.…(12分)
點(diǎn)評 本題考查面面垂直的證明,考查線段長的求法,是中檔題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題:若x=3,則x2-2x-3=0的否命題是:若x≠3,則x2-2x-3≠0 | |
B. | 命題:?x∈R,使得x2-1<0的否定是:?x∈R,均有x2-1<0 | |
C. | 命題:存在四邊相等的四邊形不是正方形,該命題是假命題 | |
D. | 命題:cosx=cosy,則x=y的逆否命題是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com