分析 (1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的正負求出函數(shù)的單調(diào)區(qū)間即可;
(2)不等式f(x)>0,即k(x+1)<-x2+2lnx+3,令g(x)=k(x+1),則直線g(x)恒過(-1,0),由題意得:$\left\{\begin{array}{l}{2k<-1+3}\\{3k>-4+2ln2+3}\end{array}\right.$,解出即可.
解答 解:(1)當(dāng)k=0時,f(x)=-x2+2lnx+3(x>0),則f′(x)=$\frac{-2(x+1)(x-1)}{x}$,
∴0<x<1時,f′(x)>0;x>1時,f′(x)<0,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞),x=1時,函數(shù)取得最大值2;
(2)不等式f(x)>0,即k(x+1)<-x2+2lnx+3
令g(x)=k(x+1),則直線g(x)恒過(-1,0),
由題意得:$\left\{\begin{array}{l}{2k<-1+3}\\{3k>-4+2ln2+3}\end{array}\right.$,
解得:-$\frac{4}{3}$+$\frac{2}{3}$ln2<k<1.
點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 7 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y-3=0 | B. | 2x+y-3=0 | C. | 3x+y-4=0 | D. | 3x-y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
推銷員編號 | 1 | 2 | 3 | 4 | 5 |
工作年限x年 | 3 | 5 | 6 | 7 | 9 |
推銷金額y萬元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $4+3\sqrt{3}$ | C. | $\frac{{5\sqrt{3}}}{3}$ | D. | $12+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com