20.我國古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計算方法.它是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時,它的正視圖和俯視圖分別可能是(  )
A.a,bB.a,dC.c,bD.c,d

分析 根據(jù)已知中“牟合方蓋”的幾何特征,分別判斷它的正視圖和俯視圖形狀,可得答案.

解答 解:當(dāng)“牟合方蓋”的正視圖和側(cè)視圖完全相同時,
它的正視圖為:a
俯視圖為:b
故選:A

點評 本題考查的知識點是簡單空間圖形的三視圖,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個“金魚”圖需要火柴的根數(shù)為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)圓C的半徑為1,圓心C在直線3x-y=0上
(Ⅰ)直線x-y+3=0被圓C截得弦長$\sqrt{2}$,求圓C的方程;
(Ⅱ)設(shè)A(0,3),若圓C上總存在兩個不同的點到A的距離為2,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0),過點(m,0)作一直線交拋物線于A(x1,y1),B(x1,y1)兩點,若kOA•kOB=-2,則m的值為( 。
A.$\frac{p}{2}$B.pC.2pD.$\frac{3p}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線$f(x)={x^3}+\sqrt{x}$在點(1,2)處的切線方程7x-2y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知α為第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3}{2}π+α})tan({π-α})}}{{tan({-α-π})sin({-α-π})}}$.
(1)化簡f(α);
(2)若$cos({α-\frac{3}{2}π})=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了檢驗“喜歡玩手機游戲與認(rèn)為作業(yè)多”是否有關(guān)系,某班主任對班級的30名學(xué)生進行了調(diào)查,得到一個2×2列聯(lián)表:
(1)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程);
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多合計
喜歡玩手機游戲182
不喜歡玩手機游戲6
合計30
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為“喜歡玩手機游戲”與“認(rèn)為作業(yè)多”有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(t)=\sqrt{\frac{1-t}{1+t}}$,F(xiàn)(x)=sinx•f(cosx)+cosx•f(sinx)且$π<x<\frac{3π}{2}$.
(Ⅰ)將函數(shù)F(x)化簡成Asin(ωx+φ)+B(其中A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函數(shù)F(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x=$\frac{1}{9}$(2n+1),n∈Z},B={x|x=$\frac{4}{9}$n±$\frac{1}{9}$,n∈Z},則集合A,B之間的關(guān)系是(  )
A.A⊆BB.B⊆AC.A=BD.A?B

查看答案和解析>>

同步練習(xí)冊答案