16.已知an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$,Sn=$\sum_{k=1}^{n}$ak,則S2009=$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1)..

分析 由題意,an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$=$\frac{1}{2}$•($\frac{1}{\sqrt{n-1}+\sqrt{n}}$-$\frac{1}{\sqrt{n}+\sqrt{n+1}}$)=$\frac{1}{2}$[($\sqrt{n}$-$\sqrt{n-1}$)-($\sqrt{n+1}$-$\sqrt{n}$)],利用疊加法即可得出結(jié)論.

解答 解:由題意,an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$=$\frac{1}{2}$•($\frac{1}{\sqrt{n-1}+\sqrt{n}}$-$\frac{1}{\sqrt{n}+\sqrt{n+1}}$)
=$\frac{1}{2}$[($\sqrt{n}$-$\sqrt{n-1}$)-($\sqrt{n+1}$-$\sqrt{n}$)],
∴S2009=$\frac{1}{2}$[(1-0+$\sqrt{2}$-1+…+$\sqrt{2009}$-$\sqrt{2008}$)-($\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{2010}$-$\sqrt{2009}$)]
=$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1).
故答案為$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1).

點(diǎn)評(píng) 本題考查數(shù)列的求和,考查疊加法的運(yùn)用,正確化簡(jiǎn)通項(xiàng)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.我們把平面幾何里相似形的概念推廣到空間:如果兩個(gè)幾何體大小不一定相等,但形狀完全相同,就把它們叫做相似體.下列幾何體中,一定屬于相似體的(  )
①兩個(gè)球體;②兩個(gè)長(zhǎng)方體;③兩個(gè)正四面體;④兩個(gè)正三棱柱;⑤兩個(gè)正四棱椎.
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率等于$\frac{{\sqrt{3}}}{2}$,且雙曲線$\frac{x^2}{3}-{y^2}=1$的焦點(diǎn)恰好是橢圓C的兩個(gè)頂點(diǎn)
(1)求橢圓C的方程.
(2)若點(diǎn)P是第一象限內(nèi)該橢圓上的一點(diǎn),且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(3)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩個(gè)點(diǎn)A,B,且∠AOB為銳角(其中O為原點(diǎn)),求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合M、N滿足條件:M∪N={1,2},則這樣的有序集合對(duì)(M,N)共有( 。
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M,N分別是棱AA1,CC1的中點(diǎn),
(Ⅰ)求正方體ABCD-A1B1C1D1的內(nèi)切球的半徑與外接球的半徑之比;
(Ⅱ)求四棱錐A-MB1ND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=sin(ωx+$\frac{π}{6}$)(ω∈N*)經(jīng)過點(diǎn)($\frac{2π}{9}$,$\frac{1}{2}$),則ω的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)y=sinωx(ω>0)在區(qū)間[0,$\left.{\frac{π}{3}}$]上為增函數(shù),且圖象關(guān)于點(diǎn)(3π,0)對(duì)稱,則ω的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x+blnx在區(qū)間(0,2)上不是單調(diào)函數(shù),則b的取值范圍是( 。
A.(-∞,0)B.(-∞,-2)C.(-2,0)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個(gè)“金魚”圖需要火柴的根數(shù)為32.

查看答案和解析>>

同步練習(xí)冊(cè)答案