分析 設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,對稱點為F'(m,n),運用中點坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,求出對稱點的坐標(biāo),代入雙曲線的方程,由離心率公式計算即可得到所求值.
解答 解:設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,
對稱點為F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得m=$\frac{^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
將F'($\frac{^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入雙曲線的方程可得$\frac{({c}^{2}-2{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}^{2}}{{c}^{2}^{2}}$=1,
化簡可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故答案為:$\sqrt{5}$.
點評 本題考查雙曲線的離心率的求法,注意運用中點坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,以及點滿足雙曲線的方程,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$ | B. | $\frac{{y}^{2}}{2}-\frac{{x}^{2}}{2}=1$ | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}=1$ | D. | $\frac{{y}^{2}}{4}-\frac{{x}^{2}}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{109}}{3}$ | B. | $\frac{10}{3}$ | C. | 3 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\sqrt{2},\sqrt{2})$ | B. | $(-\sqrt{3},\sqrt{3})$ | C. | $(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$ | D. | (-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$-1 | B. | $\frac{1+\sqrt{3}}{2}$ | C. | $\sqrt{3}$+1 | D. | $\frac{\sqrt{2}+\sqrt{6}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com