4.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦點為F,若點F關(guān)于雙曲線的漸近線的對稱點在雙曲線的右支上,則該雙曲線的離心率是$\sqrt{5}$.

分析 設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,對稱點為F'(m,n),運用中點坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,求出對稱點的坐標(biāo),代入雙曲線的方程,由離心率公式計算即可得到所求值.

解答 解:設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,
對稱點為F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得m=$\frac{^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
將F'($\frac{^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入雙曲線的方程可得$\frac{({c}^{2}-2{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}^{2}}{{c}^{2}^{2}}$=1,
化簡可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查雙曲線的離心率的求法,注意運用中點坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,以及點滿足雙曲線的方程,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)為R上的增函數(shù),a、b∈R.求證:a+b≥0的充要條件是f(a)+f(b)≥f(-a)+f(-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.與雙曲線x2-y2=1有相同漸近線且過($\sqrt{3}$,1)的雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$B.$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{2}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}=1$D.$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點是F(-c,0),斜率為2的直線l過點P并與兩條漸近線交于A,B兩點(A,B位于x軸同側(cè)),且S△BOF=4S△AOF,則雙曲線的離心率是( 。
A.$\frac{\sqrt{109}}{3}$B.$\frac{10}{3}$C.3D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+2x+1({x>0})\\{3^x}({x≤0})\end{array}\right.$,方程f(x)=m有兩解,則實數(shù)m的取值范圍為0<m<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知M(x0,y0)是雙曲線C:x2-y2=1上的一點,F(xiàn)1,F(xiàn)2是C上的兩個焦點,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,則x0的取值范圍是( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知(5,0)是雙曲線$\frac{x^2}{16}-\frac{y^2}{b^2}$=1(b>0)的一個焦點,則b=3,該雙曲線的漸近線方程為y=±$\frac{3}{4}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的斜率為2,且右焦點與拋物線y2=4$\sqrt{5}$x的焦點重合,則該雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1作傾斜角為$\frac{π}{6}$的直線交雙曲線的右支交于點P,若|PF2|=|F1F2|,則雙曲線的離心率是( 。
A.$\sqrt{3}$-1B.$\frac{1+\sqrt{3}}{2}$C.$\sqrt{3}$+1D.$\frac{\sqrt{2}+\sqrt{6}}{2}$

查看答案和解析>>

同步練習(xí)冊答案