用定義法求f(x)=
1 
x2
的導(dǎo)數(shù).
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)函數(shù) y=f(x)在點(diǎn) x0的某個(gè)鄰域內(nèi)有定義,當(dāng)x在 x0處有變化△x=x-x0,x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)值變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù) y=f(x)在點(diǎn) x0處可導(dǎo),并稱這個(gè)極限值為函數(shù) y=f(x)在點(diǎn) x0處的導(dǎo)數(shù)記為 f′(x0).
解答: 解:∵
△y
△x
=
f(x+△x)-f(x)
△x
=
1
(x+△x)2
-
1
x2
△x
=
x2-(x+△x)2
△x•(x+△x)2x2
=
-2x△x-(△x)2
△x•(x+△x)2x2
=
-2x-△x
(x+△x)2x2
,
∴f′(x)=
lim
△x→0
△y
△x
=
lim
△x→0
-2x-△x
(x+△x)2x2
=-
2
x3
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=logax(0<a<1)在區(qū)間[a,2a]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x+
1
x-8
(x<8)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
ax-1
ax+1
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2+x•cosαcosβ+cosγ-1=0的兩個(gè)根x1,x2,滿足x1+x2=
x1x2
2
,則以α,β,γ為內(nèi)角的三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種生產(chǎn)設(shè)備購買時(shí)費(fèi)用為10萬元,每年的設(shè)備管理費(fèi)共計(jì)9千元,這種生產(chǎn)設(shè)備的維修費(fèi)各年為:第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年遞增.
(1)若這種生產(chǎn)設(shè)備使用x年后總費(fèi)用為y元,求y與x的函數(shù)關(guān)系式.
(2)問這種生產(chǎn)設(shè)備最多使用多少年報(bào)廢最合算(即使用多少年的年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b是正整數(shù),函數(shù)f(x)=ax+
2
x+b
(x≠-b)的圖象經(jīng)過點(diǎn)(1,3).
(1)求函數(shù)f(x)的解析式;
(2)函數(shù)y=f(x)的圖象是否是中心對(duì)稱圖形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊在x軸的非負(fù)半軸,終邊過點(diǎn)P(4,-3),則cosα的值為( 。
A、4
B、-3
C、
4
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)拋物線C2:y2=2px,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x04
2
1
y24
3
2
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓C1上,且對(duì)角線AC、BD過原點(diǎn)O,若kAC•kBD=-
2p
a2
,
(i) 求
OA
OB
的最值.
(ii) 求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案