分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合進行求解即可.
解答 解:由z=ax+y得y=-ax+z,直線y=-ax+z是斜率為-a,y軸上的截距為z的直線,
作出不等式組對應(yīng)的平面區(qū)域如圖:
則A(1,1),B(2,4),
∵z=ax+y的最大值為2a+4,最小值為a+1,
∴直線z=ax+y過點B時,取得最大值為2a+4,
經(jīng)過點A時取得最小值為a+1,
若a=0,則y=z,此時滿足條件,
若a>0,則目標函數(shù)斜率k=-a<0,
要使目標函數(shù)在A處取得最小值,在B處取得最大值,
則目標函數(shù)的斜率滿足-a≥kBC=-1,
即0<a≤1,
若a<0,則目標函數(shù)斜率k=-a>0,
要使目標函數(shù)在A處取得最小值,在B處取得最大值,
則目標函數(shù)的斜率滿足-a≤kAC=2,
即-2≤a<0,
綜上-2≤a≤1,
故答案為:[-2,1].
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件確定A,B是最優(yōu)解是解決本題的關(guān)鍵.注意要進行分類討論,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | 2 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a4=100 | B. | a2n+1=10a2n(n∈N+) | ||
C. | a2n=10a2n-1(n∈N+) | D. | 以上說法都不正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com