分析 由已知及正弦定理,結(jié)合余弦定理,可得3cosC=$\sqrt{3}$sinC,從而可求tanC,利用同角三角函數(shù)基本關(guān)系式可求cosC,從而可求c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,結(jié)合范圍b∈[1,3],利用二次函數(shù)的圖象和性質(zhì)即可解得c的最小值.
解答 解:在△ABC中,∵$\frac{asinA+bsinB-csinC}{asinB}=\frac{{2\sqrt{3}}}{3}$sinC,
∴由正弦定理可得:$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,整理可得:a2+b2-c2=$\frac{2\sqrt{3}}{3}$absinC,
又∵由余弦定理可得:a2+b2-c2=2abcosC,
∴2abcosC=$\frac{2\sqrt{3}}{3}$absinC,整理可得:3cosC=$\sqrt{3}$sinC,
∴解得:tanC=$\sqrt{3}$,C=$\frac{π}{3}$,∴cosC=$\frac{1}{2}$,
∴c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,
∵b∈[1,3],
∴當(dāng)b=$\sqrt{3}$時(shí),c取最小值為3.
故答案為:3.
點(diǎn)評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,二次函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.2 | B. | 0.33 | C. | 0.5 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,+∞) | B. | (2,+∞) | C. | (-∞,2) | D. | (-∞,-$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com