A. | $\frac{27}{2}$ | B. | $\frac{45}{2}$ | C. | -$\frac{27}{2}$ | D. | -$\frac{45}{2}$ |
分析 由余弦定理即可得出cosB,從而得到$cos<\overrightarrow{AB},\overrightarrow{BC}>$,這樣即可由數(shù)量積的計算公式求出$\overrightarrow{AB}•\overrightarrow{BC}$.
解答 解:如圖,
在△ABC中由余弦定理:cosB=$\frac{36+16-25}{2×6×4}=\frac{9}{16}$;
∴$cos<\overrightarrow{AB},\overrightarrow{BC}>=-\frac{9}{16}$;
∴$\overrightarrow{AB}•\overrightarrow{BC}=|\overrightarrow{AB}||\overrightarrow{BC}|cos<\overrightarrow{AB},\overrightarrow{BC}>$=$6×4×(-\frac{9}{16})=-\frac{27}{2}$.
故選C.
點評 考查余弦定理,向量夾角的概念,以及向量數(shù)量積的計算公式.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a1,a2,a3,a4都大于25 | B. | a1,a2,a3,a4都小于25 | ||
C. | a1,a2,a3,a4都不大于25 | D. | a1,a2,a3,a4都不小于25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com