【題目】如圖,已知三棱錐中,平面平面,,

1)證明:

2)求直線和平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)取的中點的中點,連、,利用等腰三角形三線合一的性質(zhì)得出,利用面面垂直的性質(zhì)可得出平面,進(jìn)而得出,再證明出,可得出平面,由此可得出;

2)過點垂足為點,推導(dǎo)出平面,計算出,可得出點到平面的距離為,由此可計算出直線和平面所成角的正弦值為,進(jìn)而得解.

1)取的中點,的中點,連、、.

,的中點,,

的中點,,,

,的中點,

平面平面,交線為,平面,平面,

平面,,

,平面平面,;

2)由(1)知平面,平面,平面平面,

過點垂足為點,

平面平面,平面,平面

所以,即是點到平面的距離,

平面,平面,,

,,

,

的中點,到面的距離,

與面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,

(1)求證:平面平面

(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高新產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,市場研究人員對該公司2019年下半年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,統(tǒng)計數(shù)據(jù)列表如下:

月份

7

8

9

10

11

12

月份代碼

1

2

3

4

5

6

月利潤(萬元)

110

130

160

150

200

210

1)請用相關(guān)系數(shù)說明月利潤y(單位:萬元)與月份代碼x之間的關(guān)系的強(qiáng)弱(結(jié)果保留兩位小數(shù)),求y關(guān)于x的線性回歸方程,并預(yù)測該公司20201月份的利潤;

2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,己知生產(chǎn)新型材料的乙企業(yè)對A、B兩種型號各100件新型材料進(jìn)行模擬測試,統(tǒng)計兩種新型材料使用壽命頻數(shù)如下表所示:

使用壽命

材料類型

1個月

2個月

3個月

4個月

總計

A

15

40

35

10

100

B

10

30

40

20

100

現(xiàn)有采購成本分別為10萬元/件和12萬元/件的A、B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,不同類型的新型材料損壞的時間各不相同,經(jīng)甲公司測算,平均每件新型材料每月可以帶來5萬元收入,不考慮除采購成本之外的其他成本,假設(shè)每件新型材料的使用壽命都是整數(shù)月,且以頻率估計每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料?

參考公式:相關(guān)系數(shù)

回歸直線方程為,其中,.

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中中,是邊長為的等邊三角形,底面為直角梯形,,,

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,圓經(jīng)過橢圓的左,右焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與橢圓交于點,線段的中點為,的垂直平分線與軸和軸分別交于兩點,是否存在實數(shù),使得的面積與為原點)的面積相等?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,e為自然對數(shù)的底數(shù).

(1)若,且當(dāng)時,總成立,求實數(shù)a的取值范圍;

(2)若,且存在兩個極值點,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:

方案1:運走設(shè)備,此時需花費4000元;

方案2:建一保護(hù)圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;

方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.

(1)試求方案3中損失費X(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有下列四個結(jié)論:

為偶函數(shù);②的值域為;

上單調(diào)遞減;④上恰有8個零點,

其中所有正確結(jié)論的序號為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,...39,4040個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

A.23B.21C.35D.32

查看答案和解析>>

同步練習(xí)冊答案