10.設(shè)a=1.50.3,b=log76,c=tan300°,比較a,b,c的大小關(guān)系c<b<a.

分析 根據(jù)對(duì)數(shù)函數(shù)、指數(shù)函數(shù)以及三角函數(shù)的性質(zhì)判斷大小即可.

解答 解:∵a=1.50.3>1,0<b=log76<1,c=tan300°=-tan60°<0,
∴c<b<a,
故答案為:c<b<a.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)、指數(shù)函數(shù)以及三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=4Sn-1.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)證明:$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.冪函數(shù)f(x)=f(x)的圖象過(guò)點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(x)為(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=$\frac{1}{{x}^{2}}$C.y=x${\;}^{-\frac{1}{2}}$D.y=$\sqrt{2}$x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某中學(xué)有甲乙兩個(gè)文科班進(jìn)行數(shù)學(xué)考試,按照大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表:
優(yōu)秀非優(yōu)秀合計(jì)
20525
101525
合計(jì)302050
(1)用分層抽樣的方法在優(yōu)秀的學(xué)生中抽6人,其中甲班抽多少人?
(2)計(jì)算出統(tǒng)計(jì)量k2,能否有95%的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)”?
下面的臨界值表代參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)在△ABC中,已知邊$BC=\sqrt{3},AC=\sqrt{2}$,已知角B=45°,求角A;
若該題中的條件改為邊$BC=\sqrt{3},AC=\sqrt{2}$,已知角A=60°,求角B;請(qǐng)根據(jù)該題的解答歸納判斷解三角形的一個(gè)解、兩個(gè)解的依據(jù);
(2)A,B,C的對(duì)邊分別是a,b,c,已知3acosA=ccosB+bcosC,求A的值;
(3)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若a2-b2=$\sqrt{3}$bc,$sinC=2\sqrt{3}sinB$,求角A;
(4)在銳角△ABC,A,B,C的對(duì)邊分別是a,b,c,$\frac{a}+\frac{a}=6cosC$,求$\frac{tanC}{tanA}+\frac{tanC}{tanB}的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=x-ex的增區(qū)間為( 。
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f′(x)為y=f(x)的導(dǎo)函數(shù),且f′(x0)=a,則$\lim_{△x→0}\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=( 。
A.aB.-aC.±aD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在四面體S-ABC中,SA⊥平面ABC,△ABC是邊長(zhǎng)為3的正三角形,SA=2,則該四面體的外接球的表面積為(  )
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在凸四邊形ABCD中,角A=C=60°,AD=BC=2,且AB≠CD,則四邊形ABCD的面積為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案