分析 由已知可得$\overrightarrow{BF}$=$\overrightarrow{BD}$+$\overrightarrow{DF}$,$\overrightarrow{CF}$=-$\overrightarrow{BD}$+$\overrightarrow{DF}$,$\overrightarrow{BA}$=$\overrightarrow{BD}$+3$\overrightarrow{DF}$,$\overrightarrow{CA}$=-$\overrightarrow{BD}$+3$\overrightarrow{DF}$,$\overrightarrow{BE}$=$\overrightarrow{BD}$+2$\overrightarrow{DF}$,$\overrightarrow{CE}$=-$\overrightarrow{BD}$+2$\overrightarrow{DF}$,結(jié)合已知求出$\overrightarrow{DF}$2=$\frac{5}{8}$,$\overrightarrow{BD}$2=$\frac{13}{8}$,可得答案.
解答 解:∵D是BC的中點(diǎn),E,F(xiàn)是AD上的兩個(gè)三等分點(diǎn),
∴$\overrightarrow{BF}$=$\overrightarrow{BD}$+$\overrightarrow{DF}$,$\overrightarrow{CF}$=-$\overrightarrow{BD}$+$\overrightarrow{DF}$,
$\overrightarrow{BA}$=$\overrightarrow{BD}$+3$\overrightarrow{DF}$,$\overrightarrow{CA}$=-$\overrightarrow{BD}$+3$\overrightarrow{DF}$,
∴$\overrightarrow{BF}$•$\overrightarrow{CF}$=$\overrightarrow{DF}$2-$\overrightarrow{BD}$2=-1,
$\overrightarrow{BA}$•$\overrightarrow{CA}$=9$\overrightarrow{DF}$2-$\overrightarrow{BD}$2=4,
∴$\overrightarrow{DF}$2=$\frac{5}{8}$,$\overrightarrow{BD}$2=$\frac{13}{8}$,
又∵$\overrightarrow{BE}$=$\overrightarrow{BD}$+2$\overrightarrow{DF}$,$\overrightarrow{CE}$=-$\overrightarrow{BD}$+2$\overrightarrow{DF}$,
∴$\overrightarrow{BE}$•$\overrightarrow{CE}$=4$\overrightarrow{DF}$2-$\overrightarrow{BD}$2=$\frac{7}{8}$,
故答案為:$\frac{7}{8}$
點(diǎn)評(píng) 本題考查的知識(shí)是平面向量的數(shù)量積運(yùn)算,平面向量的線性運(yùn)算,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | m | C. | 2m | D. | 4m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com