2.在2015年全國(guó)青運(yùn)會(huì)火炬?zhèn)鬟f活動(dòng)中,有編號(hào)為1,2,3,4,5的5名火炬手.若從中任選2人,則選出的火炬手的編號(hào)相連的概率為( 。
A.$\frac{3}{10}$B.$\frac{5}{8}$C.$\frac{7}{10}$D.$\frac{2}{5}$

分析 先求出基本事件總數(shù),再求出選出的火炬手的編號(hào)相連包含的基本事件個(gè)數(shù),由此能求出選出的火炬手的編號(hào)相連的概率.

解答 解:有編號(hào)為1,2,3,4,5的5名火炬手,從中任選2人,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
選出的火炬手的編號(hào)相連包含的基本事件個(gè)數(shù)m=4,
∴選出的火炬手的編號(hào)相連的概率p=$\frac{m}{n}$=$\frac{2}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,an+1=3an+3n,a1=1,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,在△DEF中,M是在線段DF上,DE=3,DM=EM=2,sin∠F=$\frac{3}{5}$=,則邊EF的長(zhǎng)為$\frac{5\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知p:函數(shù)f(x)=(x-a)2在(-∞,-1)上是減函數(shù),$q:?x>0,a≤\frac{{{x^2}+1}}{x}$恒成立,則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且對(duì)?x∈R,有f(x)≤f($\frac{π}{3}$)成立,則f(x)的一個(gè)對(duì)稱中心坐標(biāo)是(  )
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,若起點(diǎn)和終點(diǎn)均在格點(diǎn)的向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),則x+y=$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,面PCD⊥面ABCD,PC=PD=CD=2,點(diǎn)M為線段PB上異于P、B的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)M為PB的中點(diǎn)時(shí),求證:PD∥平面ACM
(Ⅱ)當(dāng)二面角B-AC-M的余弦值為$\frac{\sqrt{5}}{5}$時(shí),試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A為左頂點(diǎn),B為短軸端點(diǎn),F(xiàn)為右焦點(diǎn),且AB⊥BF,則橢圓的離心率為(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,若A=30°,B=45°,$BC=\sqrt{6}$,則AC=$2\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案