當(dāng)x>0時,函數(shù)f(x)=(a-1)x的值總大于1,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知已知條件能夠判斷出原指數(shù)函數(shù)為增函數(shù),所以底數(shù)大于1,這樣即可求出a的范圍.
解答: 解:x>0時,(a-1)x>1=(a-1)0;
∴該指數(shù)函數(shù)應(yīng)為增函數(shù);
∴a-1>1;
∴a>2,
∴實(shí)數(shù)a的范圍為:(2,+∞).
故答案為:(2,+∞).
點(diǎn)評:本題主要考查指數(shù)函數(shù)的圖象與性質(zhì)、不等式的解法.考查指數(shù)函數(shù)的單調(diào)性和底數(shù)的關(guān)系.屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-2與拋物線y2=2x相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若k=1,求證:OA⊥OB;
(2)求弦AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校其中考試后,隨機(jī)抽查了高一甲、乙兩個班各10名學(xué)生的數(shù)學(xué)成績,其成績的莖葉圖如圖所示,那么甲、乙兩班這10名學(xué)生成績的中位數(shù)z、z與方差s、s之間的關(guān)系正確的是(  )
A、z>z,s>s
B、z<z,s>s
C、z>z,s<s
D、z<z,s<s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)“期末”考試各科成績都在“期中”考試的基礎(chǔ)上提高了2分,則該同學(xué)成績的(  )
A、中位數(shù)不變B、極差變大
C、方差不變D、標(biāo)準(zhǔn)差變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某居民小區(qū)有兩個相互獨(dú)立的安全防范系統(tǒng)(簡稱系統(tǒng))甲和乙,系統(tǒng)甲和系統(tǒng)乙在任意時刻發(fā)生故障的概率分別為
1
5
和P,若在任意時刻至多有一個系統(tǒng)發(fā)生故障的概率為
49
50

(Ⅰ)求P的值;
(Ⅱ)設(shè)系統(tǒng)乙在3次相互獨(dú)立的檢測中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望E(ξ)和方差D(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且方程f(x)-x=0的兩個根為:x1=1,x2=2.
(1)若方程f(x)-x2=0有兩個相等的實(shí)根,求f(x)的解析式;
(2)若a<0,記f(x)的最大值為g(a),求a•g(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的直線方程:
(Ⅰ)經(jīng)過點(diǎn)M(1,1),N(-2,-2);
(Ⅱ)經(jīng)過點(diǎn)P(1,4),且在兩坐標(biāo)軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:x2+2y2=4.則橢圓C的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin2x+cos(2x+
π
3

(Ⅰ)求函數(shù)f(x)的最大值及此時x的取值集合;
(Ⅱ)設(shè)A,B,C為△ABC的三個內(nèi)角,若cosB=
1
3
,f(
C
2
)=-
1
4
,且C為銳角,求sinA的值.

查看答案和解析>>

同步練習(xí)冊答案