11.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

分析 (1)對(duì)x的范圍進(jìn)行討論,去掉絕對(duì)值符號(hào),轉(zhuǎn)化為一元一次不等式解出;
(2)將兩式相加,利用絕對(duì)值不等式化簡(jiǎn)即可得出結(jié)論.

解答 解:(1)不等式f(x)≥(m+n)x等價(jià)于|x-1|-|x+1|-7x≥0,
當(dāng)x≤-1時(shí),不等式可化為2-7x≥0,解得x≤$\frac{2}{7}$,又x≤-1,故x≤-1;
當(dāng)x≥1時(shí),不等式可化為-2-7x≥0,解得x≤-$\frac{2}{7}$,舍去;
當(dāng)-1<x<1時(shí),不等式可化為-2x-7x≥0,解得x≤0,又-1<x<1,故-1<x≤0.
綜上,不等式的解集為{x|x≤0}.
(2)∵F=max{|x2-4y+m|,|y2-2x+n|},
∴F≥|x2-4y+m|,F(xiàn)≥|y2-2x+n|,
兩式相加得:2F≥|x2-4y+m|+|y2-2x+n|≥|x2+y2-2x-4y+7|=|(x-1)2+(y-2)2+2|≥2,
∴F≥1.當(dāng)且僅當(dāng)x=1,y=2時(shí)取得等號(hào).
即F的最小值為1.

點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法,絕對(duì)值不等式的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號(hào)分別為1,2,3,4,5的五批疫苗,供全市所轄的A,B,C三個(gè)區(qū)市民注射,每個(gè)區(qū)均能從中任選其中一個(gè)批號(hào)的疫苗接種.
(1)求三個(gè)區(qū)注射的疫苗批號(hào)中恰好有兩個(gè)區(qū)相同的概率;
(2)記A,B,C三個(gè)區(qū)選擇的疫苗批號(hào)的中位數(shù)為X,求 X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知奇函數(shù)f(x),在(0,+∞)上,f(x)=x2-3,則f(x)>0的解集為($\sqrt{3}$,+∞)∪(-$\sqrt{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知兩個(gè)單位向量$\overrightarrow{a}$,$\overrightarrow$,且滿足$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$,存在向量$\overrightarrow{c}$使cos($\overrightarrow{a}$-$\overrightarrow{c}$,$\overrightarrow$-$\overrightarrow{c}$)=$\frac{1}{2}$,則|$\overrightarrow{c}$|的最大值為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占$\frac{8}{13}$,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分分?jǐn)?shù)不足120分合 計(jì)
周做題時(shí)間不少于15小時(shí)15419
周做題時(shí)間不足15小時(shí)101626
合 計(jì)252045
(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)( i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.(x2+ax-1)6的展開式中x2的系數(shù)為54,則實(shí)數(shù)a為( 。
A.-2B.-3或3C.-2或2D.-3或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.經(jīng)過(guò)點(diǎn)M(-2,-4)且傾斜角為45°的直線l與拋物線C:y2=2px(p>0)交于A、B兩點(diǎn),|MA|、|AB|、|BM|成等比數(shù)列.
(Ⅰ)寫出直線l的參數(shù)方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=(x-b)lnx+x2在區(qū)間[1,e]上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,-3]B.(-∞,2e]C.(-∞,3]D.(-∞,2e2+2e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)$a=\int_0^3{({2x-1})dx}$,則二項(xiàng)式${({x-\frac{a}{2x}})^6}$展開式中x2項(xiàng)的系數(shù)為135 (用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案