10.解下列不等式:
(1)|2x+1|-2|x-1|>0.
(2)|x+3|-|2x-1|<$\frac{x}{2}$+1.

分析 (1)平方,求出x的范圍即可;(2)通過討論x的范圍,求出不等式的解集,取并集即可.

解答 解:(1)∵|2x+1|-2|x-1|>0,
∴|2x+1|>2|x-1|,
∴(2x+1)2>4(x-1)2
解得:x>0,
故不等式的解集是{x|x>0};
(2)①當(dāng)x<-3時,
原不等式化為-(x+3)-(1-2x)<$\frac{x}{2}$+1,
解得x<10,∴x<-3.
②當(dāng)-3≤x<$\frac{1}{2}$時,
原不等式化為(x+3)-(1-2x)<$\frac{x}{2}$+1,
解得x<-52,∴-3≤x<-$\frac{2}{5}$,
③當(dāng)x≥$\frac{1}{2}$時,
原不等式化為(x+3)+(1-2x)<$\frac{x}{2}$+1,
解得x>2,∴x>2,
綜上可知,原不等式的解集為:{x|x<-$\frac{2}{5}$ 或x>2}.

點評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在同一平面直角坐標(biāo)系中,直線x-2y=2經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$變成直線l,則直線l的方程是x-y-2=0..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在底面邊長為1,高為2的正四棱柱ABCD-A1B1C1D1中,點P是平面A1B1C1D1內(nèi)一點,則三棱錐P-BCD的正視圖與側(cè)視圖的面積之和為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是DD1和AB的中點,平面B1EF棱AD交于點P,則PE=( 。
A.$\frac{{\sqrt{15}}}{6}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{13}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$+a(x-lnx).(e為自然對數(shù)的底數(shù))
(Ⅰ)當(dāng)a>0時,試求 f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈($\frac{1}{2}$,2)上有三個不同的極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈R|x2+x-2<0},B={x|${\frac{x-2}{x+1}$≤0},則A∩B=( 。
A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知cos($\frac{π}{4}$+x)=$\frac{3}{5}$,($\frac{17π}{12}$<x<$\frac{7π}{4}$),求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值.
(2)若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角60°的兩個單位向量,求$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$與$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若一個等腰三角形采用斜二測畫法作出其直觀圖,其直觀圖面積是原三角形面積的( 。
A.$\frac{1}{2}$倍B.2倍C.$\frac{\sqrt{2}}{4}$倍D.$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線l的傾斜角是直線2x-y+4=0的傾斜角的兩倍,則直線l的斜率為$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案