分析 由對(duì)數(shù)函數(shù)的性質(zhì)得出函數(shù)的定義域和整理后的表達(dá)式f(x)=log${\;}_{\frac{1}{3}}$(x-4)(p-x),由復(fù)合函數(shù)的單調(diào)性可確定函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域.
解答 解:函數(shù)的定義域?yàn)?<x<p,
f(x)=log${\;}_{\frac{1}{3}}$(x+4)+log${\;}_{\frac{1}{3}}$$\frac{x-4}{x+4}$+log${\;}_{\frac{1}{3}}$(p-x)
=log${\;}_{\frac{1}{3}}$(x-4)(p-x),
∴當(dāng)x∈(4,2+$\frac{p}{2}$),函數(shù)遞減,
當(dāng)x∈(2+$\frac{p}{2}$,p),函數(shù)遞增,
最小值f(2+$\frac{p}{2}$)=2log${\;}_{\frac{1}{3}}$($\frac{p}{2}$-2),
故值域?yàn)閇2log${\;}_{\frac{1}{3}}$($\frac{p}{2}$-2),+∞).
點(diǎn)評(píng) 考查了對(duì)數(shù)函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1008 | B. | 1009 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù) | |
B. | 在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),在[-π,-$\frac{π}{2}$]和[$\frac{π}{2}$,π]上都是減函數(shù) | |
C. | 在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù) | |
D. | 在[$\frac{π}{2}$,π]和[-π,-$\frac{π}{2}$]上是增函數(shù),在[-$\frac{π}{2}$,$\frac{π}{2}$]上是減函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com