8.下列說(shuō)法正確的是( 。
A.“x2+x-2>0”是“x>l”的充分不必要條件
B.“若am2<bm2,則a<b的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是:“?x∈R,均有2x2-1<0”
D.命題“若x=$\frac{π}{4}$,則tanx=1的逆命題為真命題

分析 選項(xiàng)A,根據(jù)充分條件和必要條件判斷即可,
選項(xiàng)B,根據(jù)逆否命題及其真假判斷即可,
選項(xiàng)C,根據(jù)命題的否定判斷即可,
選項(xiàng)D,根據(jù)逆命題及其真假判斷即可.

解答 解:選項(xiàng)A,x2+x-2>0,解得x<-2或x>1,故“x2+x-2>0”是“x>l”的必要不充分條件,故A錯(cuò)誤,
選項(xiàng)B,“若am2<bm2,則a<b”的逆否命題為“若a≥b,則am2≥bm2”為真命題,故B正確,
選項(xiàng)C,命題“?x∈R,使得2x2-1<0”的否定是:“?x∈R,均有2x2-1≥0,故C錯(cuò)誤,
選項(xiàng)D,命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題“若tanx=1,則x=$\frac{π}{4}$”,因?yàn)閠anx=1,則x=kπ+$\frac{π}{4}$”,故D錯(cuò)誤,
故選:B.

點(diǎn)評(píng) 本題考查了四種命題和命題的真假判斷以及命題的否定和充分條件必要條件的判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知甲、乙、丙三種食物的維生素及成本入戲表實(shí)數(shù):
食物類(lèi)型
維生素C(單位/kg)300500300
維生素D(單位/kg)700100300
成本(元/kg)543
某學(xué)校食堂欲將這三種食物混合加工成100kg混合食物,且要求混合食物中至少需要含35000單位的維生素C及40000單位的維生素D.
(1)設(shè)所用食物甲、乙、丙的質(zhì)量分別為xkg,ykg,100-x-ykg(x≥0,y≥0),試列出x,y滿(mǎn)足的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)用x,y表示這100kg混合食物的成本z,求出z的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=(x+m)lnx在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)y=x垂直.
(1)求函數(shù)g(x)=f(x)+2lnx在[t,t+1](t>0)上的最小值;
(2)證明:f(x)>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,上海迪士尼樂(lè)園將一三角形地塊ABC的一角APQ開(kāi)辟為游客體驗(yàn)活動(dòng)區(qū).已知∠A=120°,AB、AC的長(zhǎng)度均大于200米.設(shè)AP=x,AQ=y,且AP,AQ總長(zhǎng)度為200米.
(1)當(dāng)x,y為何值時(shí)?游客體驗(yàn)活動(dòng)區(qū)APQ的面積最大,并求最大面積;
(2)當(dāng)x,y為何值時(shí)?線(xiàn)段|PQ|最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)全集為R,函數(shù)f(x)=$\sqrt{{{log}_2}x-1}$的定義域?yàn)镸,則∁RM=(  )
A.(-∞,1)B.[2,+∞)C.(-∞,2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題的逆命題為真命題的是(  )
A.若x>2,則(x-2)(x+1)>0B.若x2+y2≥4,則xy=2
C.若x+y=2,則xy≤lD.若a≥b,則ac2≥bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,AD是BC邊上的中線(xiàn),且點(diǎn)G為△ABC的重心,若sin2B+sin2C+sinBsinC=sin2A,且S△ABC=2$\sqrt{3}$,則|AG|的最小值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平行于x軸的直線(xiàn)分別交曲線(xiàn)y=e2x+1與y=$\sqrt{2x-1}$于A,B兩點(diǎn),則|AB|的最小值為( 。
A.$\frac{5+ln2}{4}$B.$\frac{5-ln2}{4}$C.$\frac{3+ln2}{4}$D.$\frac{3-ln2}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)p:?x0∈R,-x${\;}_{0}^{2}$+2x0-m>0,q:函數(shù)f(x)=$\frac{1}{3}$x3-2x2+4mx+1在R內(nèi)使增函數(shù),則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案