16.已知向量$\vec a=(3,4)$,$\vec b=(2,x)$.若$\vec a•\vec b=2|{\vec a}$|,則實數(shù)x等于( 。
A.-1B.-2C.2D.1

分析 求出|$\overrightarrow{a}$|和$\overrightarrow{a}•\overrightarrow$,根據(jù)條件列出方程解出x.

解答 解:$|\overrightarrow{a}|$=$\sqrt{{3}^{2}+{4}^{2}}$=5,$\overrightarrow{a}•\overrightarrow$=6+4x,
∴6+4x=10,
解得x=1.
故選:D.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示的算法框圖中,e是自然對數(shù)的底數(shù),則輸出的i的值為(參考數(shù)值:ln2016≈7.609)(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點分別為F1,F(xiàn)2,O為坐標(biāo)原點,以O(shè)F2為直徑的圓交雙曲線于A,B兩點,若△F1AB的外接圓過點($\frac{4\sqrt{{a}^{2}+^{2}}}{5}$,0),則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=1+2i,i為虛數(shù)單位.則z1z2=( 。
A.3B.-5C.-5iD.-1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)與兩條平行直線l1:y=x+a與l2:y=x-a相交所得的平行四邊形的面積為6b2.則雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABE是鈍角三角形,則該雙曲線的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線3x-y+1=0平行,F(xiàn)1、F2是雙曲線C的左、右焦點,M是雙曲線C上一點,且|MF1|=$\frac{3}{2}$|MF2|=6,則雙曲線的焦距長為( 。
A.6B.2C.2$\sqrt{10}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=sin2x+4sinx+3(x∈R),則f(x)的最小值為( 。
A.3B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=mx-$\frac{m}{x}$,g(x)=3lnx.
(1)當(dāng)m=4時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若x∈(1,$\sqrt{e}$](e是自然對數(shù)的底數(shù))時,不等式f(x)-g(x)<3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案