20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若點(diǎn)(a,b)在直線x(sinA-sinB)+ysinB=csinC上,則角C的值為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

分析 由條件利用正弦定理求得 a2+b2-c2=ab,再利用 余弦定理求得cosC的值,可得角C的值.

解答 解:在△ABC中,∵點(diǎn)(a,b)在直線x(sinA-sinB)+ysinB=csinC上,
∴a(sinA-sinB)+bsinB=csinC,∴由正弦定理可得:a2-ab+b2=c2,
即a2+b2-c2=ab,∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{1}{2}$,∴C=$\frac{π}{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x3+ax2+bx+c(a,b為常數(shù)),且有x=1的切線為y=$-\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$\left\{\begin{array}{l}{x+k(1-{a}^{2}),(x≥0)}\\{{x}^{2}-4x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.k≤0B.k≥8C.0≤k≤8D.k≤0或k≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx-$\frac{1}{2}$(ω>0,x∈R)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后得函數(shù)g(x),設(shè)△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c
(Ⅰ)若g(B)+g(-B)=-$\frac{3}{2}$,B$∈(0,\frac{π}{2})$,求B;
(Ⅱ)若c=$\sqrt{7}$,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且an=nsin$\frac{nπ}{2}$+$\frac{1}{2}$,則S2015=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,a1b1=3,且對(duì)任意的n∈N+,都有a1b1+a2b2+a3b3+…+anbn=$\frac{(2n-1){3}^{n+1}+3}{4}$.
(Ⅰ)求數(shù)列{anbn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}的首項(xiàng)為3,公比為3,設(shè)cn=bn+(-1)n-1λ•2an+1,且對(duì)任意的n∈N+,都有cn+1>cn成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.集合M={x|$\frac{x}{x-1}$>0},集合N={x|y=$\sqrt{x}$},則M∩N等于(  )
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.把函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位后得到函數(shù)y=sin(x+$\frac{π}{3}$)的圖象,則f(x)為( 。
A.sin(x+$\frac{7}{12}$π)B.sin(x+$\frac{3}{4}$π)C.sin(x+$\frac{5π}{12}$)D.sin(x-$\frac{5}{12}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某工廠于去年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從去年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示,如圖所示.已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過(guò)±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤(rùn)10元,生產(chǎn)一件合格品可獲利潤(rùn)5元,生產(chǎn)一件次品要虧損5元
(Ⅰ)試完成這個(gè)樣本的50件產(chǎn)品的利潤(rùn)的頻率分布表:
利潤(rùn)(元)頻數(shù)頻率
10150.3
5210.42
-5140.28
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案