5.已知等差數(shù)列{an}滿足:a3=10,a7=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)請(qǐng)問(wèn)88是數(shù)列{an}中的項(xiàng)嗎?若是,請(qǐng)指出它是哪一項(xiàng);若不是,請(qǐng)說(shuō)明理由.

分析 (1)利用等差數(shù)列通項(xiàng)公式解出即可得出.
(2)令88=an=4n-2.解得n即可判斷出結(jié)論.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a3=10,a7=26.
∴a1+2d=10,a1+6d=26,
聯(lián)立解得a1=2,d=4.
∴an=2+4(n-1)=4n-2.
(2)令88=an=4n-2.解得n=$\frac{45}{2}$∉N*,
所以88不是數(shù)列{an}中的項(xiàng).

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a,b∈(0,+∞),且$\frac{1}{a}$+$\frac{1}{2b}$=$\frac{1}{12}$,則9a•3b的最小值為(  )
A.354B.327C.54D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x>0,y>0,x+y+$\sqrt{xy}$=2,則x+y的取值范圍是[$\frac{4}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=4,|$\overrightarrow{BC}$|=3,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)既是奇函數(shù)又在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=sinx,x∈RB.y=x2,x∈RC.y=x-$\frac{1}{x}$,x≠0D.y=2-x,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.(x-2)5的展開式中,二項(xiàng)式系數(shù)的最大值為( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f($\frac{A}{2}$-$\frac{π}{12}$)=$\frac{1}{2}$,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=sinx+tanx.項(xiàng)數(shù)為31的等差數(shù)列{an}滿足${a_n}∈({-\frac{π}{2},\frac{π}{2}})$,且公差d≠0.若f(a1)+f(a2)+…+f(a31)=0,則當(dāng)k=16時(shí),f(ak)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果用$\overline{A}$表示隨機(jī)事件A的對(duì)立事件,若事件A表示“汽車甲暢銷且汽車乙滯銷”,則事件$\overline{A}$表示( 。
A.汽車甲、乙都暢銷B.汽車甲滯銷或汽車乙暢銷
C.汽車甲滯銷D.汽車甲滯銷且汽車乙暢銷

查看答案和解析>>

同步練習(xí)冊(cè)答案