分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用同角三角函數(shù)的基本關(guān)系,求得 cosA 的值.
解答 解:(1)由函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象,可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{2π}{3}-\frac{π}{6}$,∴ω=2,
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,f(x)=sin(2x+$\frac{π}{6}$).
(2)∵已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f($\frac{A}{2}$-$\frac{π}{12}$)=sinA=$\frac{1}{2}$,∴A=$\frac{π}{6}$,
∴cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $-2\sqrt{3}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 78,96,74,49,50 | B. | 78,96,74,39,60 | C. | 78,96,74,50 | D. | 78,96,74 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com