分析 函數(shù)f(x)=x2+(a-2)x+1在區(qū)間(0,2)和(3,4)上分別存在零點,由二次函數(shù)的性質(zhì)知$\left\{\begin{array}{l}{f(0)=1>0}\\{f(2)=4+2(a-2)+1<0}\\{f(3)=9+3(a-2)+1<0}\\{f(4)=16+4(a-2)+1>0}\end{array}\right.$,解此不等式求出實數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=x2+(a-2)x+1在區(qū)間(0,2)和(3,4)上分別存在零點,
∴由二次函數(shù)的性質(zhì)知$\left\{\begin{array}{l}{f(0)=1>0}\\{f(2)=4+2(a-2)+1<0}\\{f(3)=9+3(a-2)+1<0}\\{f(4)=16+4(a-2)+1>0}\end{array}\right.$
∴-$\frac{9}{4}$<a<-$\frac{4}{3}$.
故答案為-$\frac{9}{4}$<a<-$\frac{4}{3}$.
點評 本題考查函數(shù)零點的判斷定理,理解零點判定定理的內(nèi)容,將題設(shè)條件轉(zhuǎn)化為關(guān)于參數(shù)的不等式組是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,1) | C. | (-∞,0] | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{10}-\frac{y^2}{10}$=1 | B. | $\frac{y^2}{10}-\frac{x^2}{10}$=1 | C. | $\frac{x^2}{8}-\frac{y^2}{8}$=1 | D. | $\frac{y^2}{8}-\frac{x^2}{8}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,-4 | B. | -2,4 | C. | 2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com