2.關(guān)于x的方程x2+2(m+1)x+2m+6=0有兩個(gè)實(shí)根,一個(gè)比2大,一個(gè)比2小,則實(shí)數(shù)m的范圍為m<-$\frac{7}{4}$.

分析 令f(x)=x2+2(m+1)x+2m+6,根據(jù)題意可得f(2<0,由此求得m的范圍

解答 解:令f(x)=x2+2(m+1)x+2m+6,
根據(jù)題意可得f(2)=4+4(m+1)+2m+6<0,
求得m<-$\frac{7}{4}$
故答案為:m<-$\frac{7}{4}$.

點(diǎn)評 本題主要考查二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\sqrt{-{x^2}+4}$的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知如圖①,正三角形ABC的邊長為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖②.
(1)判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求棱錐E-DFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=ax在[0,1]上的最大值與最小值的和為$\frac{4}{3}$,則a=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},則A∩B=( 。
A.{1,2}B.{y|y=1或2}
C.$\{(x,y)|\left\{{\begin{array}{l}{x=0}\\{y=1}\end{array}}\right.$或$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$}D.{y|y≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,則實(shí)數(shù)a的取值范圍是a≥2,若A∩B=∅,則a的范圍為a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=x3[ln(ex+1)+ax]是奇函數(shù),那么a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某公司10個(gè)部門在公司20周年慶典中獲獎(jiǎng)人數(shù)如莖葉圖所示,則這10個(gè)部門獲獎(jiǎng)人數(shù)的中位數(shù)和眾數(shù)分別為( 。
A.10,13B.7,13C.10,4D.13,10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.圓x2+y2-4x+6y-12=0上的點(diǎn)到直線3x+4y+k=0的距離的最小值大于2,則實(shí)數(shù)k的取值范圍是k<-29或k>41.

查看答案和解析>>

同步練習(xí)冊答案