15.已知函數(shù)f(x)=x3+ax+b(a,b∈R),且f(x)在x=$\frac{\sqrt{3e}}{3}$時取極小值0(其中e為自然對數(shù)的底數(shù)).
(1)求a,b的值;
(2)記g(x)=(-a)x,m、n是函數(shù)g(x)定義域內(nèi)的任意值,且m≠n,判斷g($\frac{m+n}{2}$)、$\frac{g(m)+g(n)}{2}$、$\frac{g(m)-g(n)}{m-n}$的大小,并說明理由.
分析 (1)因為f(x)在x=$\frac{\sqrt{3}e}{3}$時取極小值0,所以$\left\{\begin{array}{l}{f(\frac{\sqrt{3}e}{3})=0}\\{f'(\frac{\sqrt{3}e}{3})=0}\end{array}\right.$,列出方程直接可求出;
(2)由題意g(x)=ex,利用作差法與構(gòu)造新函數(shù)h(x)=(x-2)ex+x+2 (x>0),利用函數(shù)單調(diào)性判斷h(x)>0即可;利用作商法求證$\frac{g(m)+g(n)}{2}$>g($\frac{m+n}{2}$);利用數(shù)形結(jié)合方法推導(dǎo) $\frac{g(m)-g(n)}{m-n}$>g($\frac{M+n}{2}$).
解答 解:(1)因為f(x)在x=$\frac{\sqrt{3}e}{3}$時取極小值0,所以$\left\{\begin{array}{l}{f(\frac{\sqrt{3}e}{3})=0}\\{f'(\frac{\sqrt{3}e}{3})=0}\end{array}\right.$,
因為f(x)=x3+ax+b,所以f'(x)=3x2+a,
所以$(\frac{\sqrt{3}e}{3})^{3}+\frac{\sqrt{3}e}{3}a+b=0$,
3$(\frac{\sqrt{3}e}{3})^{2}+a$=0,
解得:a=-e,b=$\frac{2\sqrt{3e}e}{9}$.
(2)因為a=-e,所以g(x)=ex,
所以$\frac{g(m)+g(n)}{2}=\frac{{e}^{m}+{e}^{n}}{2}$,
$\frac{g(m)-g(n)}{m-n}=\frac{{e}^{m}-{e}^{n}}{m-n}$,
設(shè)m>n,此時$\frac{g(m)+g(n)}{2}>0$,$\frac{g(m)-g(n)}{m-n}>0$,
$\frac{g(m)+g(n)}{2}-\frac{g(m)-g(n)}{m-n}$
=$\frac{{e}^{m}+{e}^{n}}{2}$-$\frac{{e}^{m}-{e}^{n}}{m-n}$
=$\frac{{e}^{n}[(m-n-2){e}^{m-n}+(m-n+2)]}{2(m-n)}$,
令h(x)=(x-2)ex+x+2 (x>0),
所以h'(x)=(x-1)ex+1 (x>0),
h''(x)=xex (x>0),
因為x>0,所以h''(x)>0,所以y=h'(x)在(0,+∞)上單調(diào)遞增.
所以當(dāng)x>0時,h'(x)>h'(0)=0,
所以y=h(x)在(0,+∞)上單調(diào)遞增,
所以當(dāng)x>0時,h(x)>h(0)=0,
又因為m>n,
所以$\frac{g(m)+g(n)}{2}-\frac{g(m)-g(n)}{m-n}$>0,
即$\frac{g(m)+g(n)}{2}$>$\frac{g(m)-g(n)}{m-n}$;
令k(x)=$\frac{g(\frac{m+n}{2})}{\frac{g(m)+g(n)}{2}}$=$\frac{2{e}^{\frac{m}{2}•}{e}^{\frac{n}{2}}}{{e}^{m}+{e}^{n}}$,
則$\frac{1}{k(x)}$=$\frac{{e}^{m}+{e}^{n}}{2{e}^{\frac{m}{2}•}{e}^{\frac{n}{2}}}$=$\frac{1}{2}$ ($\frac{{e}^{\frac{m}{2}}}{{e}^{\frac{n}{2}}}$+$\frac{{e}^{\frac{n}{2}}}{{e}^{\frac{m}{2}}}$)>1,
所以k(x)<1⇒g($\frac{m+n}{2}$)<$\frac{g(m)+g(n)}{2}$;
因為g(x)=ex是單調(diào)遞增函數(shù),所以$\frac{g(m)+g(n)}{2}$>g($\frac{m+n}{2}$);
根據(jù)圖象:
$\frac{g(m)-g(n)}{m-n}$ 是圖中直角三角形斜邊的斜率;
只有當(dāng)s>$\frac{m+n}{2}$時,才存在
g'(s)=$\frac{g(m)-g(n)}{m-n}$ 成立.
因為g(x)=g'(x)
所以$\frac{g(m)-g(n)}{m-n}=g(s)\\;>\\;g(\frac{m+n}{2})$>g($\frac{M+n}{2}$)
故:g($\frac{m+n}{2}$)<$\frac{g(m)-g(n)}{m-n}$<$\frac{g(m)+g(n)}{2}$.
點(diǎn)評 本題主要考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)性與最值,以及作差與作商比較大小,數(shù)學(xué)結(jié)合思想等知識點(diǎn),屬中等偏上題.