分析 (1)由PD⊥底面ABCD得出PD⊥AC,由菱形性質(zhì)得出BD⊥AC,故而AC⊥平面PBD,于是得出平面PAC⊥平面PBD;
(2)取AD的中點(diǎn)F,連接FH、FC.通過證明四邊形HFCE為平行四邊形得出HE∥CF,于是HE∥平面ABCD.
解答 證明:(1)∵ABCD是平行四邊形,AB=AD
∴ABCD是菱形,∴AC⊥BD,
∵PD⊥平面ABCD,AC?平面ABCD,
∴PD⊥AC,又BD?平面PBD,PD?平面PBD,BD∩PD=D,
∴AC⊥平面PBD.∵AC?平面PAC,
∴平面PAC⊥平面PBD.
(2)取AD的中點(diǎn)F,連接FH、FC.
∵H,F(xiàn)是AP,AD的中點(diǎn),
∴$FH\underline{\underline{∥}}\frac{1}{2}PD$,又∵$EC\underline{\underline{∥}}\frac{1}{2}PD$,
∴$FH\underline{\underline{∥}}EC$,
∴四邊形HFCE為平行四邊形.
∴HE∥CF,又HE?平面ABCD,CF?平面ABCD
∴HE∥平面ABCD.
點(diǎn)評(píng) 本題考查了線面平行,面面垂直的判定,構(gòu)造平行線與垂線是證明關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 充分必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com