9.命題p:若直線l1:x+ay=1與直線l2:ax+y=0平行,則a≠-1;命題q:?ω>0,使得y=cosωx的最小正周期小于$\frac{π}{2}$,則下列命題為假命題的是( 。
A.¬pB.qC.p∧qD.p∨q

分析 命題p:對a分類討論,利用兩條直線相互平行的充要條件即可判斷出真假.命題q:ω>0時,若T=$\frac{2π}{ω}$$<\frac{π}{2}$,只要ω>4即可,即可判斷出真假.再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:a=0時,兩條直線分別化為:x=1,y=0,此時兩條直線不平行,舍去;a≠0時,兩條直線分別化為:$y=-\frac{1}{a}$x+$\frac{1}{a}$,y=-ax,
若直線l1:x+ay=1與直線l2:ax+y=0平行,則$-\frac{1}{a}$=-a,$\frac{1}{a}$≠0,解得a=±1,因此命題p是假命題.
命題q:ω>0時,若T=$\frac{2π}{ω}$$<\frac{π}{2}$,只要ω>4即可,因此?ω>0,使得y=cosωx的最小正周期小于$\frac{π}{2}$,是真命題.
則下列命題為假命題的p∧q.
故選:C.

點(diǎn)評 本題考查了兩條直線相互平行的充要條件、三角函數(shù)的周期性、復(fù)合命題真假的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓E的中心為原點(diǎn),F(xiàn)(3,0)是E的焦點(diǎn),過F的直線l與E相交于A,B兩點(diǎn),且AB中點(diǎn)為(2,-1),則E的離心率e=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(α)=$\frac{{sin(π-α)cos(α-\frac{π}{2})cos(π+α)}}{{sin(\frac{π}{2}+α)cos(\frac{π}{2}+α)tan(3π+α)}}$
(1)化簡f(a).
(2)若α是第三象限角,且sin(π+α)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC為等邊三角形,且AB=$\sqrt{2}$BB1=$\sqrt{2}$,則AB1與C1B所成的角的大小為( 。
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從1,2,3,4,5中任取2個不同的數(shù),在取到的2個數(shù)之和為偶數(shù)的條件下,取到的2個數(shù)均為奇數(shù)的概率為(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{3}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如如,在三棱錐A-BCD中,AB=AD,BC⊥CD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)分別是BD,CD的中點(diǎn).
(1)求證:CD⊥平面AEF;
(2)已知AB=4,BC=2,CD=2$\sqrt{3}$,求三棱錐B-AEF的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n和為Sn,a1=2,當(dāng)n≥2時,2Sn-an=n,則S2016的值為1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),過橢圓的上頂點(diǎn)與右頂點(diǎn)的直線l,與圓x2+y2=$\frac{12}{7}$相切,且橢圓C的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合;
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條互相垂直的射線與橢圓C分別交于A,B兩點(diǎn),求△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x+alnx,若曲線y=f(x)在點(diǎn)(a,f(a))處的切線過原點(diǎn),則實(shí)數(shù)a的值為e.

查看答案和解析>>

同步練習(xí)冊答案