20.已知f(α)=$\frac{{sin(π-α)cos(α-\frac{π}{2})cos(π+α)}}{{sin(\frac{π}{2}+α)cos(\frac{π}{2}+α)tan(3π+α)}}$
(1)化簡(jiǎn)f(a).
(2)若α是第三象限角,且sin(π+α)=$\frac{1}{3}$,求f(α)的值.

分析 (1)直接利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值;
(2)由sin(π+α)=$\frac{1}{3}$,得sinα=$-\frac{1}{3}$,再由α是第三象限角,利用平方關(guān)系求得f(α)的值.

解答 解:(1)$f(α)=\frac{sinαsinα(-cosα)}{cosα(-sinα)tanα}=cosα$;
(2)由$sin(π+α)=\frac{1}{3}$,得$sinα=-\frac{1}{3}$,
又已知α是第三象限角,
∴$f(α)=cosα=-\sqrt{1-{{(\frac{1}{3})}^2}}=-\frac{{2\sqrt{2}}}{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查了誘導(dǎo)公式及同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,上頂點(diǎn)為B.已知$|AB|=\frac{{\sqrt{7}}}{2}|{F_1}{F_2}|$
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點(diǎn)M(-2a,0)的直線交橢圓Γ于P、Q(不同于左、右頂點(diǎn))兩點(diǎn),且$\frac{1}{{|P{F_1}|}}+\frac{1}{{|Q{F_1}|}}=\frac{1}{12}$.當(dāng)△PQF1面積最大時(shí),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)(y0≠0)在橢圓C:$\frac{x^2}{2}+{y^2}$=1上,過點(diǎn)P的直線l的方程為$\frac{{{x_0}x}}{2}+{y_0}$y=1.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若直線l與x軸、y軸分別相交于A,B兩點(diǎn),試求△OAB面積的最小值;
(Ⅲ)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)Q與點(diǎn)F1關(guān)于直線l對(duì)稱,求證:點(diǎn)Q,P,F(xiàn)2三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊長分別為a,b,c,且a2+b2=c2+ab,c=$\sqrt{3}$.
數(shù)列{an}是等比數(shù)列,且首項(xiàng)a1=$\frac{1}{2}$,公比為$\frac{sinA}{a}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從裝有除顏色外完全相同的2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( 。
A.至少有1個(gè)白球,都是白球B.恰有1個(gè)紅球,恰有2個(gè)紅球
C.至少有1個(gè)白球,至少有1個(gè)紅球D.至少有1個(gè)紅球,都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{lnx}$,g(x)=ax+1.(e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)x∈(1,e2]時(shí),求函數(shù)f(x)圖象上點(diǎn)M處切線斜率的最大值;
(Ⅱ) 若h(x)=f(x)+g(x)在點(diǎn)(e,h(e))處的切線l與直線x-y-2=0垂直,求切線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且4S3=7a3,則數(shù)列{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題p:若直線l1:x+ay=1與直線l2:ax+y=0平行,則a≠-1;命題q:?ω>0,使得y=cosωx的最小正周期小于$\frac{π}{2}$,則下列命題為假命題的是(  )
A.¬pB.qC.p∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{{2\sqrt{3}}}{3}$),長軸長為2$\sqrt{3}$,過右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且$\overrightarrow{OA}$=$\overrightarrow{BP}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案